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CHAPTER 1

LABEL PROPAGATION FOR CLUSTERING

LOVRO SUBELJ

University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia

Label propagation is a heuristic method initially proposed for community detection in
networks [50} 26]], while the method can be adopted also for other types of network cluster-
ing and partitioning [5, 139,62} [28]]. Among all the approaches and techniques described in
this book, label propagation is neither the most accurate nor the most robust method. It is,
however, without doubt one of the simplest and fastest clustering methods. Label propa-
gation can be implemented with a few lines of programming code and applied to networks
with hundreds of millions of nodes and edges on a standard computer, which is true only
for a handful of other methods in the literature.

In this chapter, we present the basic framework of label propagation, review different
advances and extensions of the original method, and highlight its equivalences with other
approaches. We show how label propagation can be used effectively for large-scale com-
munity detection, graph partitioning, identification of structurally equivalent nodes and
other network structures. We conclude the chapter with a summary of the label propaga-
tion methods and suggestions for future research.

1.1 Label Propagation Method

The label propagation method was introduced by Raghavan et al. [S0] for detecting non-
overlapping communities in large networks. There exist multiple interpretations of network
communities [23],154] as described in Chapter ??. For instance, a community can be seen
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2 LABEL PROPAGATION FOR CLUSTERING

Figure 1.1 Label propagation in a small network with three communities. The labels and shades of
the nodes represent community assignments at different iterations of the label propagation method.

as a densely connected group, or cluster, of nodes that is only loosely connected to the rest
of the network, which is also the perspective that we adopt here.

For the sake of simplicity, we describe the basic label propagation framework for the
case of detecting communities in simple undirected networks. Consider a network with
n nodes and let T'; denote the set of neighbors of node ¢ € {1,...,n}. Furthermore, let
g; be the group assignment or community label of node ¢ which we would like to infer.
The label propagation method then proceeds as follows. Initially, the nodes are put into
separate groups by assigning a unique label to each node as g; = . Then, the labels are
propagated between the nodes until an equilibrium is reached. At every iteration of label
propagation, each node ¢ adopts the label shared by most of its neighbors I';. Hence,

gi=argmga><|{j€Filgj =g}l (1.1)

Due to having numerous edges within communities, relative to the number of edges to-
wards the rest of the network, nodes of a community form a consensus on some label after
only a couple of iterations of label propagation. More precisely, in the first few iterations,
the labels form small groups in dense regions of the network, which then expand until
they reach the borders of communities. Thus, when the propagation converges meaning
that Equation (I.1)) holds for all of the nodes and the labels no longer change, connected
groups of nodes sharing the same label are classified as communities. Figure demon-
strates the label propagation method on a small network, where it correctly identifies the
three communities in just three iterations. In fact, due to the extremely fast structural in-
ference of label propagation, the estimated number of iterations in a network with a billion
edges is about one hundred [[60].

Label propagation is not limited to simple networks having, at most, one edge between
each pair of nodes. Let A be the adjacency matrix of a network, where A;; is the number
of edges between nodes i and j, and A;; is the number of self-edges or loops on node i.
The label propagation rule in Equation (I.I]) can be written as

g: = argmax ) | Ai;8(9;, 9), (12)
J

where 0 is the Kronecker delta operator that equals one when its arguments are the same
and zero otherwise. Furthermore, in weighted or valued networks, the label propagation
rule becomes

gi = argmax 3 Wi;6(g;, 9), (1.3)
J

where W;; is the sum of weights on the edges between nodes 4 and j, and W; is the sum of
weights on the loops on node i. Label propagation can also be adopted for multipartite and
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Figure 1.2  Resolution of ties between the maximal labels of the central nodes of the networks.
The labels and shades of the nodes represent their current community assignments.

other types of networks, which is presented in Section [I.4] However, there seems to be no
obvious extension of label propagation to networks with directed arcs, since propagating
the labels exclusively in the direction of arcs enables the exchange of labels only between
mutually reachable nodes.

1.1.1 Resolution of Label Ties

At each step of label propagation, a node adopts the label shared by most of its neigh-
bors denoted by the maximal label. There can be multiple maximal labels as shown in
the left side of Figure @} In that case, the node chooses one maximal label uniformly at
random [50]. Note, however, that the propagation might never converge, especially when
there are many nodes with multiple maximal labels in their neighborhoods. This is be-
cause their labels could constantly change and label convergence would never be reached.
The problem is particularly apparent in networks of collaborations between the authors of
scientific papers, where a single author often collaborates with others in different research
communities.

The simplest solution is always to select the smallest or the largest maximal label ac-
cording to some predefined ordering [18]], which has obvious drawbacks. Leung et al. [35]]
proposed a seemingly elegant solution to include also the concerned node’s label itself into
the maximal label consideration in Equation (I.Z). This is equivalent to adding a loop on
each node in a network. Nevertheless, the label inclusion strategy might actually create
ties when there is only one maximal label in a node’s neighborhood, which happens in the
case of the central node of the network in the middle of Figure[I.2]

Most label propagation algorithms implement the label retention strategy introduced by
Barber and Clark [S]. When there are multiple maximal labels in a node’s neighborhood,
and one of these labels is the current label of the node, the node retains its label. Otherwise,
a random maximal label is selected to be the new node label. The main difference to the
label inclusion strategy is that the current label of a node is considered only when there
actually exist multiple maximal labels in its neighborhood. For example, the network in
the right side of Figure[I.2]is at equilibrium under the label retention strategy.

Random resolution of label ties represents the first of two sources of randomness in the
label propagation method hindering its robustness and consequently also the stability of
the identified communities. The second is the random order of label propagation.

1.1.2 Order of Label Propagation

The discussion above assumed that, at every iteration of label propagation, all nodes update
their labels simultaneously. This is called synchronous propagation [S0]. The authors of
the original method noticed that synchronous propagation can lead to oscillations of some
labels in certain networks. Consider a bipartite or two-mode network with two types of
nodes and edges only between the nodes of different type. Assume that, at some iteration
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Figure 1.3  Label oscillations in bipartite and non-bipartite networks. The labels and shades of the
nodes represent community assignments at two consecutive iterations of the label propagation method.

of label propagation, the nodes of each type share the same label as in the example in the
left side of Figure Then, at the next iteration, the labels of the nodes would merely
switch and start to oscillate between two equivalent label configurations. For instance,
such behavior occurs in networks with star-like communities consisting of one or few cen-
tral hub nodes that are connected to many peripheral nodes, while the peripheral nodes
themselves are not directly connected. Note that label oscillations are not limited to bipar-
tite or nearly bipartite networks [[L8]] as seen in the example in the right side of Figure|1.3

For this reason, most label propagation algorithms implement asynchronous propaga-
tion [50]. At every iteration of label propagation, the labels of the nodes are no longer
updated all together, but sequentially in some random order, which is different for each it-
eration. This is in contrast to synchronous propagation, which always considers the labels
from the previous iteration. Due to random order of label updates, asynchronous propaga-
tion successfully breaks the cyclic oscillations of labels in Figure

It must be stressed that asynchronous propagation with random tie resolution makes the
label propagation method very unstable. In the case of the famous Zachary karate club
network [76], the method identifies more than 500 different community structures [65],
although the network consists of only 34 nodes. Asynchronous propagation applied to
large online social networks and web graphs can wrongly also produce a giant community
occupying the majority of the nodes in a network [35].

1.1.3 Label Equilibrium Criterium

Raghavan et al. [50]] defines the convergence of label propagation as the state of label
equilibrium when Equation is satisfied for every node in a network. Let k; denote the
number of neighbors of node ¢ and let k7 be the number of neighbors that share label g.
The label propagation rule in Equation can be rewritten as

gi = argm?x k. (1.4)

The label equilibrium criterium thus requires that, for every node i, the following must
hold
Vg: kI > K. (1.5)

In other words, all nodes must be labeled with the maximal labels in their neighborhoods.
This criterion is similar, but not equivalent, to the definition of a strong community [49].
Strong communities require that every node has strictly more neighbors in its own com-
munity than in all other communities together, whereas at the label equilibrium every node
has at least as many neighbors in its own community than in any other community.
An alternative approach is to define the convergence of label propagation as the state
when the labels no longer change [5]. Equation (I.5) obviously holds for every node in
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a network and the label equilibrium is reached. Note, however, that this criterion must
necessarily be combined with an appropriate label tie resolution strategy in order to ensure
convergence when there are multiple maximal labels in the neighborhoods of nodes.

1.1.4 Algorithm and Complexity

As mentioned in the introduction, the label propagation method can be implemented with
a few lines of programming code. Algorithm [I.1|shows the pseudocode of the basic asyn-
chronous propagation framework defining the convergence of label propagation as the state
of no label change and implements the retention strategy for label tie resolution.

Algorithm 1.1

label propagation {
for each node ¢ € {1,...,n} {
initialize node label g; with i;

}
until node labels change repeat {
for each node ¢ € {1,...,n} in random order {
compute labels {g} that maximize kj =3 A;;6(g;,9);
if g; ¢ {9} update g¢; with random label from {g};
}

report connected components induced by node labels;

When the state of label equilibrium is reached, groups of nodes sharing the same label
are classified as communities. These can, in general, be disconnected, which happens
when a node propagates its label to two or more disconnected nodes, but is itself relabeled
in the later iterations of label propagation. Since connectedness is a fundamental property
of network communities [23], groups of nodes with the same label are split into connected
groups of nodes at the end of label propagation. Reported communities are thus connected
components of the subnetworks induced by different node labels.

The label propagation method exhibits near-linear time complexity in the number of
edges of a network denoted with m [50}[35]. At every iteration of label propagation, the
label of node ¢ can be updated with a sweep through its neighborhood which has complex-
ity O(k;), where k; is the degree of node . Since ) , k; = 2m, the complexity of an entire
iteration of label propagation is O(m). A random order or permutation of nodes before
each iteration of asynchronous propagation can be computed in O(n) time, while the di-
vision into connected groups of nodes at the end of label propagation can be implemented
with a simple network traversal, which has complexity O(n + m).

The overall time complexity of label propagation is therefore O(cn+cm), where ¢ is the
number of iterations before convergence. In the case of networks with a clear community
structure, label propagation commonly converges in no more than ten iterations. Still,
the number of iterations increases with the size of a network as can be seen in Figure [T.4]
Subelj and Bajec [60] estimated the number of iterations of asynchronous label propagation
from a large number of empirical networks obtaining ¢ ~ 1.03m?%-23. The time complexity
of label propagation is thus approximately O(m%), which makes the method applicable
to networks with up to hundreds of millions of nodes and edges on a standard desktop
computer as long as the network fits into its main memory.
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Figure 1.4 The number of iterations of label propagation, the number of relabeled nodes at first
eight iterations and the running time in seconds. The markers are averages over 25 runs of the label
propagation method, while the error bars show standard deviation.

The left side of Figure |1.4] shows the number of iterations of the label propagation
framework in Algorithm [I.1]in artificial networks with planted community structure [33],
Erdds-Rényi random graphs [22] and a part of the Google web graph [34] available at
KONEC The web graph consists of 875,713 nodes and 5,105,039 edges, while the
sizes of random graphs and artificial networks can be seen in Figure[I.4] In random graphs
having no structure, label propagation correctly classifies all nodes into a single group
in about five iterations, regardless of the size of a graph. Yet, the number of iterations
increases with the size in artificial networks with community structure, while the estimated
number of iterations in a network with a billion edges is 113 [60].

Most nodes acquire their final label after the first few iterations of label propagation.
The middle of Figure [T.4] shows the number of nodes that update their label at a partic-
ular iteration for the Google web graph, artificial networks having a planted community
structure and random graphs with 10° nodes. The number of relabeled nodes drops ex-
ponentially with the number of iterations (logarithmic scales are used). For example, the
percentages of relabeled nodes of the web graph after the first five iterations are 90.7%,
14.9%, 3.2%, 1.1% and 0.4%, respectively. Furthermore, the algorithm running time is
only 19.5 seconds as shown in the right side of Figure|l.4

1.2 Label Propagation as Optimization

Here, we discuss the objective function of the label propagation method to shed light on
label propagation as an optimization method.

At every iteration of label propagation, each node adopts the most common label in its
neighborhood. Therefore, label propagation can be seen as a local optimization method
seeking to maximize the number of neighbors with the same label or, equivalently, mini-
mize the number of neighbors with different labels. From the perspective of node i, the la-
bel propagation rule in Equation assigns its group label g; to maximize ) | y A;i;0(gi,95),
where A is the adjacency matrix of the network. Hence, the objective function maximized
by the basic label propagation method is

F({g}) = ZAij5(9i7gj)a (1.6)

'http://konect.uni-koblenz.de
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where {g} is the group labeling of network nodes [65} [5]. Notice that F is non-negative
and has the optimum of 2m, where m is the number of edges in a network.

Equation (T.6) has a trivial optimal solution of labeling all nodes in a network with the
same label, corresponding to putting all nodes into one group. Equation (I.2) then holds for
every node and F = 2m. However, starting with each node in its own group by assigning
them unique labels when F = 0, the label propagation process usually is trapped in a local
optimum. For networks having a clear community structure, this corresponds to nodes of
each community being labeled with the same label when F = 2m — 2m/, where m/ is the
number of edges between communities. For example, the value of F for the community
structure revealed in the right side of Figure[I.T]is 46 — 8 = 38.

Network community structure is only a local optimum of the label propagation pro-
cess, whereas the global optimal solution corresponds to a trivial, undesirable, labeling.
Thus, directly optimizing the objective function of label propagation with some other op-
timization method trying to escape a local optimum might not yield a favorable outcome.
Furthermore, a network can have also many local optima that imply considerably different
community structures. As already mentioned in Section [I.1.2] label propagation identifies
more than 500 different structures in the Zachary karate club network [76] with 34 nodes
and more than 10° in the Saccharomyces cerevisiae protein interaction network [31]] with
2,111 nodes [65]. Raghavan et al. [S0] suggested aggregating labelings from multiple runs
of label propagation. However, this can fragment a network into very small communi-
ties [65]. A more suitable method for combining different labelings of label propagation is
consensus clustering [32, 78], [24]], but this comes with increased time complexity.

The above perspective on label propagation as an optimization method results from the
following equivalence. Tibély and Kertész [65] have shown that the label propagation
in Equation (I.2)) is equivalent to a ferromagnetic Potts model [48| [70]. The g-state Potts
model is a generalization of the Ising model as a system of interacting spins on a lattice,
with each spin pointing to one of g equally spaced directions. Consider the so-called
standard ¢-state Potts model on a network placing a spin on each node [51]]. Let o; denote
the spin on node ¢ which can be in one of ¢ possible states, where ¢ is set equal to the
number of nodes in a network n. The zero-temperature kinetics of the model are defined as
follows. One starts with each spin in its own state as o; = ¢ and then iteratively aligns the
spins to the states of their neighbors as in the label propagation process. The ground state
is ferromagnetic with all spins in the same state, while the dynamics can also get trapped
at a metastable state with more than one spin state. The Hamiltonian of the model can be

written as
H({O’}) = — E Aijd(oi,ojL (17)
ij

where {o} are the states of spins on network nodes. By setting o; = g;, minimizing the
described Potts model Hamiltonian H in Equation is equivalent to maximizing the
objective function of the label propagation method F in Equation (I.6).

As almost any other clustering method, the label propagation method is nondeterminis-
tic and can produce different outcomes on different runs. Therefore, throughout the chap-
ter, we report the results obtained over multiple runs of the method.

1.3 Advances of Label Propagation

Section [I.T] presented the basic label propagation method and discussed details of its im-
plementation. Section [I.2] clarified the objective function of label propagation. In this
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section, we review different advances of the original method addressing some of the weak-
nesses identified in the previous sections. Section[I.3.T|shows how to redefine the method’s
objective function by imposing constraints to use label propagation as a general optimiza-
tion framework. Section [I.3.2] demonstrates different heuristic approaches changing the
method’s objective function implicitly by adjusting the propagation strength of individual
nodes. This promotes the propagation of labels from certain desirable nodes or, equiva-
lently, suppresses the propagation from the remaining nodes. Finally, Section dis-
cusses different empirically motivated techniques to improve the overall performance of
the method.

Unless explicitly stated otherwise, the above advances are presented for the case of
non-overlapping community detection in simple undirected networks. Nevertheless, Sec-
tion [I.4] presents extensions of label propagation to other types of networks such as multi-
partite, multilayer and signed networks. Furthermore, in Section we show how label
propagation can be adopted to detect alternative types of groups such as overlapping or hi-
erarchical communities and groups of nodes that are similarly connected to the rest of the
network by structurally equivalent nodes as in Chapter ??. Note that different approaches
and techniques described in Sections|1.3 can be combined. The advances of the basic
label propagation method described in this section can be used directly with the extensions
to other types of groups and networks described in the next sections.

1.3.1 Label Propagation under Constraints

As shown in Section[I.2] the objective function of label propagation has a trivial optimal
solution of assigning all nodes to a single group. A standard approach for eliminating such
undesirable solutions is to add constraints to the objective function of the method. Let H
be the objective function of label propagation expressed in the form of the ferromagnetic
Potts model Hamiltonian as in Equation (I.7). The modified objective function minimized
by label propagation under constraints is 4 + AG, where G represents a penalty term with
imposed constraints with A being a regularization parameter weighing the penalty term G
against the original objective function H.

Barber and Clark [5]] proposed a penalty term G; borrowed from the graph partitioning
literature requiring that nodes are divided into smaller groups of the same size.

Gi({g}) =D _n, (1.8)

where ng = ). 6(gi, g) is the number of nodes in group g, g; is the group label of node i
andn =) g g 1s the number of nodes in a network. The penalty term G; has the minimum
of n when all nodes are in their own groups and the maximum of n? when all nodes are
in a single group, which effectively guards against the undesirable trivial solution. The
modified objective function H1; = H + A1 G; can be written as

Hi({g}) = =D (Ai; — M)d(gi,5), (1.9)

ij

where A is the adjacency matrix of a network. Equation is known as the constant Potts
model [67] and is equivalent to a specific version of the stochastic block model [[77], while
the regularization parameter \; can be interpreted as the threshold between the density of
edges within and between different groups. The label propagation rule in Equations (I.2)
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and (1.4) for the modified objective function H; is

gs = argmax Z(Aij —A1)0(g5,9)
7 (1.10)
= argmax k{ — A\ing,
g

where kY = Y j A;;6(g;,9) is the number of neighbors of node ¢ in group g. Equa-
tion can be efficiently implemented with Algorithm [I.1|by updating n,.

An alternative penalty term Go, which has been popular in the community detection
literature, requires nodes being divided into groups having the same total degree [J5]].

G({g}) =D ke, (1.11)

where ky = >, k;0(gi, g) is the sum of degrees of nodes in group g and k; is the degree
of node i. The penalty term G is again minimized when all nodes are in their own groups
and maximized when all nodes are in a single group, avoiding the trivial solution. The
modified objective function Ho = H + A2Go can be written as

Ha({g}) = = D (Aij — Aokik;)3(gi, 95), (1.12)

ij
while the corresponding label propagation rule is

g; = argmax Z(Aij — Aokik;)o(gj,9)
j (1.13)
= argmax kY — Aokiky + Aok?0(gs, 9)-
g

Equation (1.13) can be efficiently implemented with Algorithmby updating k.

Equation (I.12)) is a special case of the Potts model investigated by Reichardt and Born-
holdt [51] and is a generalization of a popular quality function in community detection
named modularity [45]. The modularity Q measures the number of edges within network
communities against the expected number of edges in a random graph with the same degree
sequence [46]. Formally,

1 kik;
Agh) =5~ <A,-,j - Qmj) 5(9:.95)- (1.14)
tj

Notice that setting Ay = 1/2m in Equation yields Ho = —2mQ [3].

Label propagation under the constraints of Equation (1.13) can be employed for max-
imizing the modularity Q. Note, however, that the method might easily get trapped at a
local optimum, not corresponding to very high Q. For example, the average Q over 25 runs
for the Google web graph from Figure [I.4]is 0.763. In contrast, the unconstrained label
propagation gives a value of 0.801. For this reason, label propagation under constraints is
usually combined with a multistep greedy agglomerative algorithm [55]], one driving the
method away from a local optimum. Using such an optimization framework, Liu and Mu-
rata [38]] revealed community structures with the highest values of Q than ever reported for
some commonly analyzed empirical networks. Han et al. [28] recently adapted the same
framework also for another popular quality function called map equation [53]].
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The third variant of label propagation under constraints [12] is based on the absolute
Potts model [52] with the modified objective function H3 = H + A3G3 written as

Hz({g}) = — Z(Aij()\3 +1) — A3)d(94, 95)- (1.15)

By setting \; = A\3/(A3 + 1) in Equation (1.9), one derives H1 = Hs/(A3 + 1) implying
the method is in fact equivalent to the constant Potts model [[67].

1.3.2 Label Propagation with Preferences

Leung et al. [35]] have shown that adjusting the propagation strength of individual nodes can
improve the performance of the label propagation method in certain networks. Let p; be
the propagation strength associated with node ¢ called the node preference. Incorporating
the node preferences p; into the basic label propagation rule in Equation (I.2) gives

gi = argmax y p;Ai;0(g;,9), (1.16)
J

while the method objective function in Equation (1.7) becomes

Ho({g}) = = pipjAijo(gi, 95)- (1.17)

ij

In contrast to Section these node preferences impose constraints on the objective
function only implicitly by either promoting or suppressing the propagation of labels from
certain desirable nodes, as shown in the examples below.

An obvious choice is to set the node preferences equal to the degrees of the nodes as
p; = k; [35]]. For instance, this improves the performance of community detection in net-
works with high degree nodes in the center of each community. éubelj and Bajec [60, 57]
proposed estimating the most central nodes of each community or group during the label
propagation process using a random walk diffusion. Consider a random walker utilized
on a network limited to the nodes of group g; and let p; be the probability that the walker
visits node ¢. The probabilities p; are high for the most central nodes of group g; and low
for the nodes on the border. It holds

:;JA 5(gi,95)s (1.18)

where k) = > ;Aijo (94, g;) is the number of neighbors of node i in its group g;. Clearly
= k7' is the solution of Equation , but initializing the probabilities as p; = 1
and updating their values according to Equation (1.18)) only when the nodes change their
groups g; gives a different result. This mimics the actual propagation of labels occurring
in a random order and keeps the node probabilities p; synchronized with the node groups
gi. Equation can be efficiently implemented in Algorithm [1.1]by updating k"
Label propagation with node preferences defined in Equation is called defensive
propagation [60] as it restrains the propagation of labels to preserve a larger number of
groups by increasing the propagation strength of their central nodes or, equivalently, de-
creasing the propagation strength of their border nodes. Another strategy is to increase
the propagation strength of the border nodes, which results in a more rapid expansion of
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Figure 1.5 Comparison of defensive and offensive label propagation in artificial networks with a
planted community structure and a triangular grid with four missing edges. The labels and shades of
the nodes represent communities or groups identified by the two methods.

groups and a smaller number of larger groups. This is called offensive propagation [60]
with the label propagation rule written as

gi = argmax Z(l —p;j)Aij6(g5,9). (1.19)
J

The left side of Figure [I.5]demonstrates the defensive and offensive label propagation
methods in an artificial network with two planted communities that are only loosely sep-
arated. While defensive propagation correctly identifies the communities planted in the
network, offensive propagation spreads the labels beyond the borders of the communities
and reveals no structure in this network. The right side of Figure [I.5] compares the meth-
ods also on a graph partitioning problem. The methods are applied to a triangular grid with
four edges removed, which makes a division into two groups the only sensible partition.
In contrast, offensive propagation correctly partitions the grid into two groups, whereas
defensive propagation overly restrains the spread of labels and recovers four groups.

Table [T.T] further compares the defensive and offensive label propagation methods on
the European road network [59] with 1,174 nodes and a network of user interactions on
Wikipedia [43] with 126,514 nodes. Both networks are available at KONECT. Degeneracy
diagrams in Table [T.I| show the non-degenerate or effective ranges of the revealed groups
that span the fraction of nodes not covered by the tiny groups with three nodes or less,
or the largest group [64] (left and right percentages, respectively). Ideally, the thick lines
in Table[T.T]would span from left to right. Due to the sparse grid-like structure of the road
network, defensive propagation partitions 53.6% of the nodes into tiny groups, which is not
a useful result. This can be avoided by using offensive propagation, where this percentage
equals 7.1%. However, in the case of much denser Wikipedia network, offensive propa-
gation returns one giant group occupying 79.7% of the nodes, thus defensive propagation
with 16.8% is preferred. Note that the crucial difference between these two networks re-
quiring the use of different methods is their density. A generally applicable approach is
first to use defensive propagation and then iteratively refine the revealed groups with of-

Table 1.1 Degeneracy diagrams of the label propagation methods displaying the non-degenerate
ranges of the revealed groups (thick lines), while the percentages show the fraction of nodes in the
tiny groups (left) and in the largest group (right). The values are averages over 25 runs of the methods.

Method European Roads Wikipedia Users
Standard Propagation 61.5% —+— 0.9% 5.8% H—+—"" 67.6%
Defensive Propagation 53.6% —+— 0.9% 6.6% H————+— 16.8%

Offensive Propagation 7.1% H——+ 8.5% 4.3% H—— 79.7%
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fensive propagation [57,160], in this order. For example, such approach reveals a partition
of the road network with 7.9% of the nodes in the tiny groups and 6.4% of the nodes in the
largest group on average.

An alternative definition of defensive and offensive label propagation is to replace the
random walk diffusion in Equation (I.18) with the eigenvector centrality [14] defined as

pi = kg Y piAid(gi,95), (1.20)

J

where k4, is a normalizing constant equal to the leading eigenvalue of the adjacency matrix
A reduced to the nodes in group g;. Zhang et al. [[77] have shown that defensive label
propagation with the eigenvector centrality for the node preferences is equivalent to the
maximum likelihood estimation of a stochastic block model with Gaussian weights on the
edges. This relates the label propagation method with yet another popular approach in the
literature that is more thoroughly described in Chapter 2?.

1.3.3 Method Stability and Complexity

Here, we discuss different techniques to improve the performance of the label propagation
method by either increasing its stability or reducing its complexity.

One of the main sources of instability of the method is the random order of label up-
dates in asynchronous propagation [50, [35]. Recall that the primary reason for this is to
break cyclic oscillations of labels in synchronous propagation as it occurs in Figure [T.3]
Li et al. [36] proposed still to use synchronous propagation that can lead to oscillations of
labels, but rather to break the oscillations by making the label propagation rule in Equa-
tion probabilistic. The probability that the node ¢ with group label g; updates its label
to g is defined as

Pi(g) o< 8(gi,g) + Y _ Aij6(g;,9)- (1.21)
J

Although this successfully eliminates the oscillations of labels in Figure probabilistic
label propagation can make the method even more unstable. It must be stressed that this
instability represents a major issue, especially in very large networks.

Cordasco and Gargano [17,[18] proposed a more elegant solution called semi-synchronous
label propagation based on node coloring. A coloring of network nodes is an assignment
of colors to nodes such that no two connected nodes share the same color [44]. Notice that
if two nodes are not connected their labels do not directly depend on one another in Equa-
tion (I.2) and can therefore be updated simultaneously using synchronous propagation.
Given a coloring of the network, semi-synchronous propagation traverses different colors
in a random order as in asynchronous propagation. In contrast, the labels of the nodes with
the same color are updated simultaneously as in synchronous propagation. For instance,
coloring each node with a different color is equivalent to asynchronous propagation, while
a simple greedy algorithm can find a coloring with at most A + 1 colors, where A is the
maximum degree in a network. In contrast to synchronous and asynchronous propagation,
the convergence of semi-synchronous propagation can be formally proven.

Subelj and Bajec [59] [61]] observed empirically that updating the labels of the nodes in
some fixed order drives the label propagation process towards similar solutions as setting
the node preferences in Equation higher (lower) for the nodes that appear earlier
(later) in the order and then updating their labels in a random order as in asynchronous
propagation. The node preferences can thus be used as node balancers to counteract the
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Figure 1.6 Performance of the label propagation methods in artificial networks with planted
community structure represented by the labels and shades of the nodes. The markers are averages
over 25 runs of the methods, while the error bars show standard errors.

randomness introduced by asynchronous propagation. Let ¢; be a normalized position of
the node 7 in some random order, which is set to 1/n for the first node, 2/n for the second
node and so on, where n is the number of nodes in a network. The value ¢; represents
the time at which the label of node ¢ is updated. Balanced label propagation sets the node
preferences using a logistic function as

1
9i = argmgaxz mflij(s(gjyg)» (1.22)
J

where v is a parameter of the method. For v = 0, Equation (T.22) is equivalent to the
standard label propagation rule in Equation (I.Z), while v > 0 makes the method more
stable, but this increases its time complexity. In practice, one must therefore decide on a
compromise between the method stability and its time complexity.

The method stability is tightly knit with its performance. Figure [I.6] compares com-
munity detection of the label propagation methods in artificial networks with four planted
communities [25]]. Community structure is controlled by a mixing parameter y that repre-
sents the fraction of nodes’ neighbors in their own community. For example, the left side
of Figure [T.6] shows realizations of networks for 4 = 0.1 and 0.4. Performance of the
methods is measured with the normalized mutual information [23]], where higher is better
(see [23] for the exact definition). As seen in the right side of Figure @ balanced label
propagation combined with the defensive node preferences in Equation (T.I8) performs
best in these networks, when v = 1.

Another prominent approach for improving community detection of the label propaga-
tion methods is consensus clustering [32 78, 24]. One first applies the method to a given

Figure 1.7 Label propagation in artificial networks with planted community structure and the
corresponding consensus graph. The labels and shades of the nodes represent communities identified
by the label propagation method.
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Figure 1.8  Offensive label propagation with consensus clustering in the European road network.
The labels and shades of the nodes represent the largest eight groups identified by the method.

network multiple times and constructs a weighted consensus graph, where weights repre-
sent the number of times two nodes are classified into the same community. Note that only
edges with weights above a given threshold are kept. The entire process is then repeated on
the consensus graph until the revealed communities no longer change. For example, the left
side of Figure[I.7]shows two realizations of groups obtained with the standard label prop-
agation method in Equation in artificial networks for © = 0.33. Although these do
not exactly coincide with the planted communities, label propagation in the corresponding
consensus graph recovers the correct community structure as demonstrated in the right side
of Figure[I.7] For another example, Figure [I.8]shows the largest connected component of
the European road network from Table[T.T]and the largest groups revealed by the offensive
label propagation method in Equation (I.I9) with 25 runs of consensus clustering.

Note, however, that consensus clustering can substantially increase the method’s com-
putational time. Other work has thus considered different hybrid approaches to improve
the stability of community detection of the label propagation methods, where community
structure revealed by one method is refined by another [57,160]], possibly proceeding itera-
tively or incrementally [35,[19]. For instance, label propagation under constraints [38), 28]
has traditionally been combined with a multistep greedy agglomeration [153]].

In the remaining, we also briefly discuss different approaches to reduce the complexity
of the label propagation method. Although the time complexity is already nearly linear
O(m1'2), where m is the number of edges in a network [60], one can still further improve
the computational time. As shown in Figure [[.4] the number of nodes that update their
label at a particular iteration of label propagation drops exponentially with the number of
iterations. Thus, after a couple of iterations, most nodes already acquire their final label
and no longer need to be updated. For instance, one can selectively update only the labels
of those nodes for which the fraction of neighbors sharing the same label is below a certain
threshold [35], which can make the method truly linear O(m). Xie and Szymanski [[72]
further formalized this idea using the concept of active and passive nodes. A node is said to
be passive if updating would not change its label. Otherwise, the node is active. The labels
are therefore propagated only between the active nodes until all nodes become passive.

Due to its algorithmic simplicity, the label propagation method is easily parallelizable,
especially with synchronous or semi-synchronous propagation mentioned above. The
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Table 1.2  Comparison of the label propagation methods on the signed Wikipedia web of trust
network. The values are averages over 25 runs of the methods, while # is defined in Equation (1.7).

Method + Edges Within — Edges Between Hamiltonian H
Standard Propagation 96.6% 6.7% —528185.8
Signed Propagation 90.9% 56.7% —535065.2
w/ Equal Weights 75.6% 81.8% —460413.1

method is thus suitable for application in distributed computing environments such as
Spar [[L6]] or Hadoo [47] and on parallel architectures [56]. In this way, label prop-
agation has been successfully used on billion-node networks [16, 69].

1.4 Extensions to Other Networks

Throughout the chapter, we have assumed that the label propagation method is applied to
simple undirected networks. Nevertheless, the method can easily be extended to networks
with multiple edges between the nodes as in Equation (I.2) and networks with weights on
the edges as in Equation (I.3). This holds also for the different advances of the propaga-
tion methods presented in Section In contrast, there seem to be no straightforward
extension to networks with directed arcs. The reason for this is that propagating the la-
bels exclusively in the direction of arcs enables exchange of labels only between mutually
reachable nodes forming a strongly connected component. Since any directed network is
a directed acyclic graph on its strongly connected components, the labels can propagate
between the nodes of different strongly connected components merely in one direction.
Therefore, one usually disregards the directions of arcs when applying the label propaga-
tion method to directed networks except in the case when most arcs are reciprocal.

The method can be extended to signed networks with positive and negative edges be-
tween the nodes as in the approach of Doreian and Mrvar [21]. In order to partition the
network in such a way that positive edges mostly appear within the groups and negative
edges between the groups, one assigns some fixed positive (negative) weight to positive
(negative) edges and then applies the standard label propagation method for weighted net-
works in Equation (I.3). According to the objective function in Equation (I.7), the method
thus simultaneously tries to maximize the number of positive edges within the groups and
the number of negative edges between the groups. Still, this does not ensure that the nodes
connected by a negative edge are necessarily assigned to different groups, but merely re-
stricts the propagation of labels along the negative edges [[1].

Table shows the standard and signed label propagation methods applied to the
Wikipedia web of trust network [43]] available at KONECT. The network consists of 138,587
nodes connected by 629,689 positive edges and 110,417 negative edges. Standard label
propagation ignoring the signs of edges reveals one giant group occupying 89.0% of the
nodes on average. Most positive edges are thus obviously within the groups, but the same
also holds for negative edges. Signed label propagation with positive and negative weights
on the edges reduces the size of the largest group to 60.6% of the nodes on average. Most
positive edges remain within the groups, while more than half of negative edges is between

2http://spark.apache.org
3http://hadoop.apache.org
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Figure 1.9 Non-overlapping and overlapping label propagation in artificial networks with planted
community structure. The labels and shades of the nodes represent communities identified by different
methods, while the types of nodes of the bipartite network are shown with distinct symbols.

the groups. Note that the method assigns weights 1 and —1 to positive and negative edges.
Since only 12.0% of the edges in the network are negative, this actually puts more em-
phasis on the positive edges. To circumvent the latter, one can assign equal total weight
to positive and negative edges by using weights 1/m,, and —1/m,,, where m,, and m,,
are the numbers of positive and negative edges. Signed label propagation with equal total
weights returns a larger number of groups with 43.2% of the nodes in the largest group, and
about the same fraction of positive edges within the groups and negative edges between the
groups. For further discussion on partitioning signed networks see Chapter ??.

Any label propagation method can also be used on bipartite networks with two types
of nodes and edges only between the nodes of different type as in the left side of Fig-
ure[T.9] For instance, Barber and Clark [3] adopted the label propagation methods under
constraints to optimize bipartite modularity [4]. Liu and Murata [39, 40] proposed a proper
extension of the label propagation framework to bipartite networks. This is a special case
of semi-synchronous propagation with node coloring discussed in Section [I.3.3] Recall
that semi-synchronous propagation updates the labels of the nodes with the same color
synchronously, while different colors are traversed asynchronously. In bipartite networks,
the types of the nodes can be taken for their colors, thus the method alternates between
the nodes of each type, while the propagation of labels always occurs synchronously. The
same principle can be extended also to multipartite networks, where again the nodes of
the same type are assigned the same color. However, in multirelational or multilayer net-
works [[L1]], one can separately consider the nodes of different layers, but the propagation
of labels within each layer requires asynchronicity for the method to converge.

1.5 Alternative Types of Network Structures

The label propagation method was originally designed to detect non-overlapping commu-
nities in networks [50} 35]]. In the following, we show how the method can be extended
also to more diverse network structures. We consider extensions to overlapping groups
of nodes, groups of nodes at multiple resolutions that form a nested hierarchy and groups
of structurally equivalent nodes. Note that, in contrast to the extensions to other types of
networks in Section [I.4] this increases the time complexity of the method derived in Sec-
tion[I.T.4] As shown in the following, the time complexity increases by a factor depending
on the type of the groups considered.
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1.5.1 Overlapping Groups of Nodes

Extension of the label propagation method to overlapping groups of nodes is relatively
straightforward [26} [71]. Instead of assigning a single group label g; to node ¢ as the
standard label propagation method in Equation (I.2)), multiple labels are assigned to each
node. Let g; be the group function of node ¢ where p;(g) represents how strongly the node
is affiliated to group g. In particular, the node belongs to groups g for which g;(g) > 0,
while its group affiliations are normalized to one as > 0;(g) = 1. At the beginning of
label propagation, each node is put into its own group by setting g; () = 1. Then, at every
iteration, each node adopts the group labels of its neighbors. The affiliation p;(g) of node
i to group g is computed as the average affiliation of its neighbors. Hence,

0i(g) = Z QJ;Q)Aij7 (1.23)
j 1

where A is the network adjacency matrix and k; is the degree of node i. Equation (1.23)
can be combined also with an inflation operator raising o;(g) to some exponent [[74]. Ob-
viously, the groups can now overlap as the nodes can belong to multiple groups. For ex-
ample, the right side of Figure[I.9|demonstrates the non-overlapping and overlapping label
propagation methods in an artificial network with two planted overlapping communities.

Notice, however, that the label propagation rule in Equation (I.23) inevitably leads to
every node in a network belonging to all groups. It is therefore necessary to limit the
number of groups a single node can belong to. Gregory [26] proposed that, after each
iteration of label propagation, the group affiliations g;(g) below 1/v are set to zero and
renormalized, where v is a method parameter. Since ) g 0i (g) = 1 for every node, the
nodes can thus belong to at most v groups. The parameter v can be difficult to determine
if a network consists of overlapping and non-overlapping groups. Wu et al. [[71]] suggested
replacing the parameter v by a node-dependent threshold p to keep node ¢ affiliated to
group g as long as

0i(9)

o9 s, (1.24)
maxgy 0;(g)

The time complexity of the described overlapping label propagation method is O(cmv),
where c is the number of iterations of label propagation, m is the number of edges in a
network and v is the maximum number of groups a single node belongs to. The method is
implemented by a popular community detection algorithm COPRAE] [126]).

It is also possible to detect overlapping groups of nodes by using the standard non-over-
lapping label propagation method. Xie and Szymanski [[75} [73] proposed associating a
memory with each node to store group labels from previous iterations. Running the label
propagation for c iterations assigns c labels to each node’s memory. The probability of
observing label g in the memory of node ¢ or, equivalently, the number of occurrences
of g in the memory of i can then be interpreted as the group affiliation o;(g) as defined
above. Note that label propagation with node memory splits the label propagation rule
in Equation into two steps. Each neighbor j of the considered node i first propagates
a random label from its memory, with the label g being selected with probability ¢,(g),
while node ¢ then adds the most frequently propagated label to its memory. The time
complexity of the method is O(cm), where ¢ is a small constant set to say 25. The method

4http://gregory.org/research/networks/software/copra.html
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Figure 1.10  Artificial networks with two levels of planted community structure and the
corresponding group hierarchy. The labels and shades of the nodes represent communities identified
by the label propagation method.

is implemented by another popular community detection algorithm SLPAE| [75] and its
successor SpeakEasyﬁ [124]].

DEMOl\ﬂ [19] is a well known community detection algorithm that also uses non-
overlapping label propagation to detect overlapping groups. Instead of assigning a memory
to each node as above, this label propagation method is separately applied to the subnet-
works reduced to the neighborhoods of the nodes. All of the resulting groups that are, in
general, overlapping are then merged together.

1.5.2 Hierarchy of Groups of Nodes

Label propagation can be applied in a hierarchical manner in order to reveal a nested hier-
archy of groups of nodes [35, 160} 62, 37]. The bottom level of such a hierarchy represents
groups of nodes. The next level represent groups of groups of nodes and so on. Cutting the
hierarchy at different levels results in groups of nodes at multiple resolutions. For example,
Figure [I.10] demonstrates the hierarchical label propagation method in artificial networks
with two levels of planted community structure. Let G, Ga, . . . denote the groups revealed
by the basic label propagation method in Equation (T.2)), which represent the bottom level
of the group hierarchy. One then constructs a meta-network, where nodes correspond to
different groups G; and an edge is put between the groups G; and Gj if their nodes are
connected in the original network. The weight of the edge is set to the number of edges
between the groups G; and G in the original network. Similarly, a loop is added to each
group GG; with a weight equal to the number of edges within the group G; in the original
network. Finally, one applies the weighted label propagation method in Equation (I.3) to
the constructed meta-network to reveal groups of groups G;. These constitute the next
level of the group hierarchy. The entire process of such bottom-up group agglomeration
is repeated iteratively until a single group is recovered, which is the root of the hierarchy.
Note that label propagation with group agglomeration is algorithmically equivalent to the
famous Louvain modularity optimization method [10} 66].

Figure[I[.TT|shows the meta-networks of the largest connected components of the Google
web graph from Figure [T.4] with 875,713 nodes and the Pennsylvania road network [34]
with 1,087,562 nodes. Both networks are available at KONECT. The meta-networks were
revealed by the hierarchical label propagation method with two and three steps of group
agglomeration, and consist of 564 and 235 nodes, respectively. Notice that, although the

Shttp://sites.google.com/site/communitydetectionslpa
Ohttp://www.cs.rpi.edu/~szymansk/SpeakEasy
7http://www.michelecoscia.com/?page_id:42
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Figure 1.11 The meta-networks of the Google web graph and the Pennsylvania road network
identified by the hierarchical label propagation method. The shades of the nodes are proportional to
their corrected clustering coefficient [6], where darker (lighter) means higher (lower).

networks are reduced to less than a thousandth of their original size, the group agglomer-
ation process preserves a dense central core of the web graph and a sparse homogeneous
topology of the road network [9].

Bottom-up group agglomeration can be effectively combined with top-down group re-
finement [62, [63]. Let G1,Go, ... be the groups revealed at some step of the group ag-
glomeration. Prior to the construction of the meta-network, one separately applies the
label propagation method to the subnetworks of the original network limited to the nodes
of groups G;. As this process repeats recursively until a single group is recovered, a sub-
hierarchy of groups is revealed for each group G;. Bottom-up agglomeration with top-
down refinement enables the identification of a very detailed hierarchy of groups present
in a network [62, 24]. One can also further control the resolution of groups by adjusting
the weights on the loops in the meta-network [27]. The time complexity of the described
hierarchical label propagation method is O(c¢mh), where ¢ is the number of iterations and
m the number of edges as before, while h is the number of levels of the group hierarchy.

1.5.3 Structural Equivalence Groups

Different label propagation methods presented so far can be used to reveal connected and
cohesive groups of nodes in a network. This includes detection of densely connected com-
munities and graph partitioning as demonstrated in Figure [[.3] However, the methods
cannot be adopted for detection of any kind of disconnected groups of nodes. Therefore,
possibly the most interesting extension of the label propagation method is to find groups
of structurally equivalent nodes [38}, 161, 42, |62]. Informally, two nodes are said to be
structurally equivalent if they are connected to the same other nodes in the network and
thus have the same common neighbors [41, 20], whereas the nodes themselves may be
connected or not. We here consider a relaxed definition of structural equivalence in which
nodes can have only the majority of their neighbors in common. For example, the left side
of Figure[I.12] shows an artificial network with two planted communities of nodes labeled
with 2 and 4, and two groups of structurally equivalent nodes labeled with 1 and 3 that
form a bipartite structure. The former are also called assortative groups, while the latter
are referred to as disassortative groups [23]].
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Figure 1.12  Performance of the label propagation methods in artificial networks with planted
communities and structural equivalence groups represented by the labels and shades of the nodes.
The markers are averages over 25 runs of the methods, while the error bars show standard errors.

Let k; denote the degree of node 7 and k;; the number of common neighbors of nodes
i and j. Hence, k; = Zj A;j and ki; = ), A Akj, where A is the network adjacency
matrix. Xie and Szymanski [72] modified the label propagation rule in Equation (T.2) as

g: = argmax y (1 + kij)Ai0(95,9), (1.25)
J

which increases the strength of propagation between structurally equivalent nodes. Notice
that Equation (T.23)) is in fact equivalent to simultaneously propagating the labels between
the neighboring nodes as standard and also through their common neighbors represented
by the term k;;. Yet, the labels are propagated merely between connected nodes, thus the
method can still reveal only connected groups of nodes.

Subelj and Bajec [611 62] proposed a proper extension of the label propagation method
for structural equivalence that separately propagates the labels between the neighboring
nodes and through nodes’ common neighbors. Let 7, be a parameter of group g that is set
close to one for connected groups and close to zero for structural equivalence groups. The
label propagation rule for general groups of nodes is then written as

1
gi = argmax | 7, E A;i;6(g95,9)+ (1 —1y) E 1 1AikAkj5(gj,g) . (1.26)
’ J kj#i

The lefthand sum propagates the labels between the neighboring nodes 7 and j, while
the righthand sum propagates the labels between the nodes 7 and j through their com-
mon neighbors k. The degree kj in the denominator ensures that the number of terms
in both sums is proportional to k;. By setting all group parameters in Equation as
T4 = 1, one retrieves the standard label propagation method in Equation @) that can
detect connected groups of nodes like communities, while setting 7, ~ 0, the method can
detect structural equivalence groups. In the case when a community consists of structurally
equivalent nodes as in a clique of nodes, any of the two methods can be used. In practice,
the group parameters 7, can be inferred from the network structure or estimated during the
label propagation process [614162]. However, this can make the method very unstable. For
this reason, we propose a much simpler approach.

Applying the standard label propagation method to the network in the left side of Fig-
ure [T.12] reveals three groups of nodes, since both structural equivalence groups are de-
tected as a single group of nodes. In general, configurations of connected structural equiv-
alence groups are merged together by the method. One can, however, employ this behavior
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to detect structural equivalence groups using a two-step approach with top-down group re-
finement introduced before [62}163]]. The first step reveals connected groups of nodes using
the standard label propagation method by setting 74, = 1 in Equation @ This includes
communities and configurations of connected structural equivalence groups. In the second
step, one separately tries to refine each group from the first step using the structural equiv-
alence label propagation method by setting 7, = 0 in Equation . While communities
are still detected as a single group of nodes, configurations of structural equivalence groups
are now further partitioned into separate structural equivalence groups.

The right side of Figure [I.12] compares group detection of the label propagation meth-
ods in artificial networks with four groups discussed above [61]. Network structure is
controlled by a mixing parameter p that represents the fraction of edges that comply with
the group structure, while the examples in the left side of Figure|l.12|show realizations of
networks for o = 0.1 and 0.4. Performance of the methods is measured with the normal-
ized mutual information [23]], where higher is better. As already mentioned, standard label
propagation combines the two structural equivalence groups into a single group. Yet, label
propagation for structural equivalence can reveal all four groups, but only when these are
clearly defined in the network structure. Finally, the two-step approach performs best in
these networks, and can accurately detect communities and structural equivalence groups
as long as the latter can first be identified as a single connected group of nodes.

In Section [T.4] we argued that standard label propagation cannot be easily extended to
directed networks. In contrast, label propagation for structural equivalence can in fact
be adopted for detection of specific groups of nodes in directed networks. For instance,
consider a network of citations between scientific papers. Let A be the network adjacency
matrix where A;; represents an arc from node ¢ to node j meaning that paper 4 cites paper
j. One might be interested in revealing groups of papers that cite the same other papers
which is known as cocitation [[15[7]. The label propagation rule for cocitation is

gi = argmax > | Ay A;xd(g;9), (1.27)
kj#i
which propagates the labels between papers ¢ and j through their common citations k. An

alternative concept is bibliographic coupling [30]], which refers to groups of papers that are
cited by the same other papers. The label propagation rule for bibliographic coupling is

gi = argmjx Z AriAk;io(95,9). (1.28)
ki

As an example, we constructed a citation network of 26,038 papers published in Phys-
ical Review H°|between the years 2001 and 2015. This includes also thirteen references
of this chapter namely Refs. [46l 1451 51} 150, 14} 55) 33) 1351 15 1521 160} 67} 66]]. Twelve of
these focus on topics in network community detection and graph partitioning, whereas [46]
discusses random graph models. We first ignore the directions of citations and apply the
standard label propagation method in Equation with 25 runs of consensus cluster-
ing introduced in Section[I.3.3] The method reveals 3,033 groups of papers. The largest
group consists of 1,276 papers on network structure and dynamics including [46] with the
most frequent terms in the titles of the papers being ’network’, ’scale-free’, ’complex’,
’epidemic’, "percolation’, 'random’, ’small-world’ and ’social’. The remaining references
mentioned above are all included in the fourth largest group with 189 other papers on

Shttp://journals.aps.org/pre
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Figure 1.13  Word clouds demonstrating two of the largest groups of nodes revealed by different
label propagation methods in the Physical Review E paper citation network. These show the most
frequently appearing terms in the titles of the corresponding papers.

network community detection. The left side of Figure [I.I3] shows a word cloud gener-
ated from the titles of these papers displaying the most frequently appearing terms in an
aesthetically pleasing wayﬂ These are ’community’, 'network’, detection’, *'modularity’,
’structure’, *complex’, 'finding’ and ’clustering’.

We next consider also the directions of citations by employing the cocitation label prop-
agation method in Equation (T.27) that is again combined with 25 runs of consensus clus-
tering. The method reveals 1,016 cocitation groups with 2,427 papers in the largest group.
The latter consists of papers on various topics in network science including all the thir-
teen references from above. The right side of Figure [T.13] shows a word cloud generated
from the titles of these papers, where the most frequent terms are “network’, ’scale-free’,
’complex’, ’synchronization’, ’community’, 'random’, ’small-world” and ’oscillators’.

As shown in Section [I.T.4] the time complexity of a single iteration of the standard
label propagation method is O(m) = O({k)n), where n and m are the number of nodes
and edges in a network, and (k) = " k;/n is the average node degree. Since structural
equivalence methods presented above propagate the labels also between the nodes two
steps apart, the time complexity of a single iteration becomes O((k?)n), where (k?) =
>, kZ/n is the average node degree squared. The total time complexity of the methods is
therefore O(c(k?)n), where c is the number of iterations of label propagation.

1.6 Applications of Label Propagation

The label propagation methods are most commonly used for clustering and partitioning
large networks with the main goal being network abstraction. In this section, we briefly
review also selected other applications of label propagation.

People You May Know is an important feature of the Facebook social service providing
recommendations for future friendship ties between its users. Most friendship recommen-
dations are of type ’friend-of-friend’ meaning that the users are suggested other users two
hops away in the Facebook social graph [3]. Due to an immense size of the graph, it is
distributed among multiple physical machines thus each machine stores some local part of
the graph consisting only of a subset of users. When a friendship recommendation has to
be made for a given user, it is desired that the users two steps away in the graph reside at the

dhttps://www. jasondavies.com/wordcloud
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same machine as the concerned user, in order to minimize the communication between the
machines. As reported in 2013 [68]], the users are effectively partitioned among machines
using a variant of label propagation under constraints presented in Section [I.3.1]

A related application is compression of very large web graphs and online social net-
works to enable their analysis on a single machine [13]]. Most compression algorithms rely
on a given ordering of network nodes such that the edges are mainly between the nodes
that are close in the ordering. In the case of web graphs, one can order the nodes represent-
ing web pages lexicographically by their URL, whereas no equivalent approach exists for
social networks. Boldi et al. [12] adopted the label propagation method in Equation (T.15)
to compute the ordering of network nodes iteratively starting from a random one. Using
such a setting, the authors reported a major improvement in compression with respect to
other known techniques. Most social networks and web graphs can be compressed to just
a couple of bits per edge, while still allowing for an efficient network traversal. For in-
stance, this compression approach was in fact used to reveal the four degrees of separation
between the active users of Facebook in 2011 [2].

1.7 Summary and Outlook

In this chapter, we have presented the basic label propagation method for network clus-
tering and partitioning, together with its numerous variants and advances, extensions to
different types of networks and clusterings, and selected large-scale applications. Due
to high popularity of label propagation in the literature, our review here is by no means
complete. In particular, we have focused primarily on the results reported in the physics
and computer science literature. However, the very same approach is also commonly used
in the social networks literature [8} 20], where it is known under the name relocation al-
gorithm or simply as a local greedy optimization. The label propagation method and the
relocation algorithm thus provide a sort of common ground between two diverging factions
of network science in the natural and social science literature [29]].

As stated already in the introduction, label propagation is neither the most accurate nor
the most robust clustering method. Yet, it is a very fast and versatile method that can
readily be applied to largest networks and easily adopted for a particular application. It
should be used as the first choice for gaining a preliminary insight into the structure of
a network, before trying out more sophisticated and expensive methods. In the case of
very large online social networks and web graphs, the label propagation method is in fact
often the only choice. Future research should therefore focus more on specific applications
of label propagation in large networks, where the use of simple and efficient methods is
unavoidable, and less on new ad-hoc modifications of the original method, since there are
already quite many.
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