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Network comparison is crucial in various scientific and industrial do-
mains, allowing evaluation and analysis of different aspects of the net-
works. In this paper, we provide an overview of multiple established
methods for network comparison. The isomorphism-based network
comparison relies on mapping one network into another and is an NP
problem. Furthermore, it is not useful as the output is binary; yes
the networks are the same or no, the networks are not the same. For
this reason, different network comparison methods evolved. Graph
edit distance measures the minimum number of operations required
to transform one graph into another, but it is still an exponentially
hard problem. Comparison by network fragments involves breaking
down the network into smaller components, focusing the comparison
on the local structural properties. Comparison by network distances
is assessing the dissimilarity based on the structural or topological
relations between the compared networks using measures such as
Hamming distance, D-measure, Graph Edit Distance etc. In the last
part, we present the comparison of networks using individual metrics,
such as clustering coefficient, characteristic path length, degree dis-
tribution, etc. Single network comparison however provides useful
insight into single aspects of similarities of networks, but no single
metric can capture the complexity and diversity of network structures,
thus we also present the statistical comparison over multiple metrics.

P roblem definition, motivation, background, con-
tributions etc. Network comparison is important in
various fields of science and industry as it allows us to evaluate
and analyze different networks, and systems based on specific
criteria. Through the analysis of networks, we gain valuable
insights into the intricate interactions within various systems
that might otherwise remain unexplored. Several different
methods and approaches have been developed in order to
compare networks.

Comparing networks is frequently valuable (1, 2), especially
when the properties of a specific network are known. This
enables knowledge transfer by assessing the similarities or
differences between two networks. For example, comparing
two virus networks might be useful for finding vaccination (3).
Comparing brain networks and their distances correlates with
the IQ of a person (4). Furthermore, based on the triad
significance profile (TSP) similarity the social networks and
the WWW nets may be a part of a super-family. Network
comparison is also useful in language analyses. Languages
and their text structures from the same linguistic group tend
to have similar networks (3). In the field of international
economics, one might seek to compare the trade structures
of different product categories. Similarly, in transportation,
comparing the flight networks of various airlines is essential.
Or in social media, examining and comparing the propagation
cascades of news across different platforms (5). We can see
that there are plenty of practical uses for network comparison.

However, due to computational limitations, comparing large
networks directly is not feasible. As a result, researchers have
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established methods based on heuristics, such as the degree dis-
tribution, clustering coefficient, diameter, and relative graphlet
frequency distribution. These metrics enable us to identify
differences between networks by examining a list of properties.
However, proving the similarity between the two networks is
far more challenging and demanding. The similarity has to
be shown across exponentially numerous properties. Herein,
network comparison is a tough challenge and several methods
have been established in order to evaluate the similarity (6).

The most primitive method is comparing networks by iso-
morphism. The method is based on mapping — isomorphism.
Due to exponential space growth, the method is impractical for
large networks (7). Herein, the researchers have been forced
to establish new methods. Some methods focus on calculating
specific distances between networks (see (8, 9)). Another
group of methods is based on fragment analysis, which al-
lows researchers to compare specific parts of networks (see
(3, 6, 10)). And last, comparison by individual (see (11-13)
or multiple metrics (see (1, 2)).

In this paper, we tend to describe and explain the theory
behind the different established methods for network compari-
son. We tend to merge some of the most common approaches
for network comparison in one place and allow a clear and
transparent insight into the selected network comparison meth-
ods.

Comparison by isomorphism

In mathematics, isomorphism refers to mapping that preserves
the underlying structure between two structures of the same type.
Mapping can be reversed by inverse mapping. In terms of network
comparison isomorphism is used to compare two networks in order
to determine if they are structurally equivalent. It means finding
an isomorphism between the nodes of the two networks, such that
the adjacency relationships are preserved. Or in other words, two
graphs are said to be isomorphic if it is possible to obtain one
from the other by changing the node labels without affecting their
topology (7). However, a full description of the differences between
two large networks is unachievable since it requires solving the graph
isomorphism problem (6).

Definition 1 (Graph isomorphism). Given two graphs, G1 and
G2 respectfully, an isomorphism of the two graphs is a bijection
between the vertex sets of G1 and G2:

f:V(Gl) — V(G2),

such that any two vertices u and v, where u,v € V(G1), are adjacent
in G1 if and only if f(u) and f(v) are adjacent in G2 (7).

For example, graphs G1 and G2 in Figure 1 are not isomorphic
since the unique vertex of degree 5 in G1 is adjacent to a vertex of
degree 2 which does not hold for G2 (14).

According to the Definiton 1 and the shown example, we can see
that solving the problem requires exploring all possible mappings
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Fig. 1. Pair of non-isomorphic graphs from (14).

between the vertices of the two graphs and checking if the adjacency
relationships are preserved. The search space grows exponentially
with the size of the input graphs. Graph isomorphism is highly
computationally complex. It requires exploring a large search space
without any efficient known algorithm. Herein, graph isomorphism
is an NP-complete problem (7).

Comparison using graph edit distance

Graph edit distance (GED) has been used as a similarity measure
for representing the distances between attributed graphs. It defines
the similarity of two graphs by the minimum amount of distortion,
needed to transform one graph into the other. Unlike other measures,
GED does not require any restrictions and can be applied to any
type of graphs. Its exponential computational complexity in terms
of the number of graph vertices is the main drawback of graph
edit distance. The computation of GED is a NP-hard problem
and would take unacceptable time of computation on large graphs
(15). By a finite sequence of graph edit operations any graph can be
transformed to another one and GED is defined by the least-cost edit
operation sequence. For each operation a cost function is defined
and the cost for this edit operation sequence is sum of costs for all
operations in the sequence. The sequence of graph edit operations
and its cost needed for transforming a graph is not unique, but
the least cost is exclusive. Then sequence with the least cost is
requested and its cost is the GED between the two graphs. The
key issues are how to define the similarity of components in graphs
and to determine costs of edit operations. Graph edit distance for
attributed graphs is computed according to the attributes which
depend on the algorithm. For the non-attributed graphs which only
have information of connectivity structure, GED algorithms require
conversion of graphs to strings and computation of edit distance for
strings (16).

Comparison by network fragments

Comparison by fragments refers to analyzing and comparing net-
works by breaking them into smaller components or fragments. This
allows a more focused examination of specific parts of the network
and enables comparison based on the characteristics and behavior of
such fragments. This approach is especially useful when comparing
large networks, where other analyses (e.g., comparing by isomor-
phism) of the entire network may be infeasible and computationally
expensive.

One such method was introduced by N. Przulj (6) in 2007.
The method is based on graphlets and their degree distributions.
Graphlets are defined as the set of 30 non-isomorphic undirected
graphs with at most 5 nodes. The degree distribution measures,
for each value of k, the number of nodes of degree k. The degree
distribution is then calculated for each graphlet, resulting in graphlet
degree distribution (GDD). GDD measures the local structural
properties of a network.
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Definition 2 (GDD agreement). Let G be a network, and dé,
the j-th GDD. We scale d’; (k) as

; dZ, (k)
SL(k) = S,
Lk) = 2
Next, we normalize the distribution as:
: 5& (k)
Nk — g

e S

Let H be another network, and Ng{ its normalized distribution.
The distance between G and H is then defined as:

1
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DI(G,H) = | Y [N (k) - Ni; (k)2
k=1
~To get the j-th GDD agreement the distance is Teversed as
AI(G,H) =1— DI(G,H). And the final agreement between the

two networks is either the arithmetic or geometric mean of A7 (G, H)
over all graphlets j (6).

Aparicio et al. (10) introduce a similar approach, only with
changed distance calculation. Their reversed distance is defined as:
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The final agreement is then calculated as the arithmetic mean
over all GDAJ (G, H) similar as in the (6). They modified the metric
to only consider orbits that appear in at least one of the networks.
Modifying the metrics was crucial, since the original agreement from
(6) of two networks is increased even if the orbit frequency is zero
in both networks. For bigger graphlets, it is likely that many of the
possible orbits do not appear in either network. Herein, this may
increase the original defined agreement.

Another approach was presented by Milo et al. (3). They devel-
oped an approach for comparing network fragments based on the
significance profile (SP). In order to calculate the SP of a network,
the network is compared to an ensemble of randomized networks
with the same degree sequence.

Definition 3 (Significance profile (SP)). Let G be a graph. For
each subgraph i, statistical significance is described by the Z-score:

n'rjeal _ ﬁrand
7 i

d
std(nfond)

/)

where n{ml is the number of times the subgraph appears in

the network and 7" and std(nfemd) are the mean and standard
deviation of its appearances in the randomized network ensemble.
The SP vector is the vector of Z scores normalized to length 1 as

follows:
7
SP = ————

oA
SP can be used in directed connected triads — triad significance
profile (TSP). By calculating the correlation coefficient matriz of
TSP for different networks, we can compare directed networks (3).

The described approach is also suitable for undirected networks.
Undirected networks only have V and triangle types of triads.
Herein, the authors analyse the connected tetrads. Instead of
using Z-scores A; is calculated as:

real =rand
TL,L- TLi

Y O . N—
¥ n;‘eal +ﬁ:and T
where ¢ (i.e., ¢ = 4) ensures that |A| is not too large if the
subgraph is not frequent in both real and random networks. Subgrah
ratio profile (SRP) is then the vector of A; normalised to length of
1 as in Definiton 3 (3).
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Comparison by network distances

Identifying and quantifying dissimilarities between graphs is a chal-
lenging problem, where the similarity or dissimilarity is determined
on the structural or topological characteristics of graphs. There
are several distance metrics that can be used for comparison, but
especially for large networks it is important, that the comparison is
not limited to extract only partial information and that it is not
computationally too demanding.

A. D-measure. Schieber et al. (8) introduced D-measure on a simple
networks example as seen in Figure 2. All three networks N1, N2 and
N3 consists out of 9 nodes and 9 links. N1 presents one connected
component, N2 has just one isolated node and N3 consists of 3
connected components. A good measure should give a low distance
value between N1 and N2 and the highest of all pairs to N1 — N3.
Between N2 and N3 the value should still be quite high, but lower
than between N1 — N3. In Table 1 are the dissimilarity distances.
The Hamming distance — H and the graph edit distance — GED do
not find topological differences, returning same value for all three
network examples.

s
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Fig. 2. Different networks with the same number of nodes and links from (8).

Table 1. Comparison between dissimilarity distances (H-Hamming
distance; GED—graph edit distance; D-dissimilarity) from (8).

Networks H GED D

(N1,N2) 12 6 0.252
(N1, N3) 12 6 0.565
(N2,N3) 12 6 0.473

We can start defining the D-measure with Network Node Disper-
sion — NND, which is a measure of the heterogeneity of a graph G
in terms of connectivity distances. The network qualifies as hetero-
geneous when it possesses high diversity of node-distance patterns,
therefore, high NND. The vectors, containing PDF values, are used,
for precise comparison of networks.

taken into account the difference between the graphs averaged node-
distance distributions (network’s distance distribution), pug and g,
and the comparison between the a—centrality values of the graphs
and their complements, computed through the Jensen—Shannon
divergence (7).

Definition 5 (Dissimilarity measure). The dissimilarity mea-
sure is defined as follows:

D(G,G’) = w1 ‘7(“12"7;;“”) +w2|\/NND(G) — /NND(G')
% j(PaG,PaG/) J(PaGC7PaGC/)
* 2 (\/ log2 +\/ log2 )

where N is the size of G and M the size of G’ G¢ indicates the
complement of G, w1, w2andws are the arbitrary weights such that
wy + wg + w3z = 1.

As the NND is always less than 1 and J(Pg, Pgr)/log2 < 1 then,
0 < D(G,G’") < 1. D-measure captures global and local graphs
dissimilarities, The first part compares averaged connectivity node’s
patterns, corresponding to the graph distance distribution. The
second term analyses the heterogeneity of the nodes and the third
part considers the centrality of each node, taken into account each
node’s direct and indirect connectivity span.

D(G, &) equals to zero, only if G and G’ have the same graphs
distance distribution, the same NND and the same a—centrality
vector. However, there is no guarantee that D returns a non-zero
value for all non-isomorphic networks.

B. Network portraits. Network portraits were introduced by Bagrow
et al. in 2008 (9) to visualize and encode structural properties of
a given network. The network portrait By j is the array with (Lk)
elements and includes the number of nodes who have k nodes at
distance 1. The limitation for lis0 <l <dand fork0 <k < N -1,
where distance is taken as the shortest path length and d is the
graph’s diameter. The portrait remains identical, regardless how the
nodes are ordered or labeled. The matrix encodes many structural
graph features. The zeroth row stores the number of nodes N
in the graph By, = Ny 1 and the first row captures the degree
distribution By, = NP(k), as the neighbors are at the distance 1=1.
Second row captures the distribution of next-nearest neighbors etc.
M is the number of edges and ij_o kBy = 2M. The diameter

d of the graph is d = maxl|B;; > 0; fork > 0. The number of

shortest paths of length 1 is % Zg:() kBy . One of most important
properties of portraits is that they are graph invariant.

Definition 4 (Node-distance distribution). The distance dis-
tribution in each node i, P; = p;(j), with p;(j) being the fraction
of nodes, that are connected to node ¢ at distance j. The set of N
node-distance distributions, Pi...Pn, contains detailed information
of the topology of the network, in a compact way. A network with
N nodes, the set of N distance distributions P;...Py, is normalized
by log(d+1), where d is the network’s diameter. The Network Node
Dispersion — NND, the Jensen—Shannon divergence — J and the
average of the N distributions — p; are defined as follows:

B )
log(d+1)
T(Prr P) = 3 Y miloa(EL)

o J
]

25:1 pl(])
N

NND(G) =

py =

Definition 6 (Graph invariant). A graph invariant is a property
of a graph that is invariant under graph isomorphism, i.e., it is a
function f such that f(G)=f(H) whenever G and H are isomorphic
graphs.

However, most k-regular networks (graphs in which all nodes have
degree k) possess NND=0. To define a general dissimilarity measure,
it is important to properly discriminate them. That is why it is also
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Instead of directly comparing graphs G and G’, the portraits
of the graphs B and B’ can be computed, on which the com-
parison can be made. For each portrait B, the matrix C con-
sisting of row-wise cumulative distributions of B, is computed

k N
Cri = Zj:o Bl,j/zj:() By, ;.

The metric-like graph comparison is performed by row-wise
Kolmogorov-Smirnov test statistic K; between corresponding rows
lin C and C’ K; = maz|Cy — Cll,k" If the two graphs have
different diameters, the portrait for the smaller diameter graph can
be expanded to the same size as the larger diameter graph by defining
empty shells 1<d as B = N, . Lastly, the aggregation of the
test statistics for all pairs of rows is done, using a weighted average
to define the similarity between G and G’, A(G,G’) = A(B,B’) =

Zl o Ky

T, where o is a weight chosen to increase the impact of the
ag
1

lower, more heavily occupied shells a; = Zk>0 By + Zk>0 Bl’ e

In the article from 2019 (17) the authors introduced an im-
proved network comparison based on portraits. The rows of B
matrix may be interpreted as probability distributions, where
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P(k|l) = —k-B—l’n% is the probability of choosing the node, that
has k nodes Cat a distance 1 and n. is the number of nodes

within connected component c, the Zc n2 runs over the number

of connected components, and the n. satisfy Zc ne = N.That

leads to an immediate comparison per row for two portraits:
KL(PHDIQEI) = 37" ) P(kil)ioga S where KL(plla)
is the Kullback-Liebler (KL) divergence between two distributions

’

kB
p and q, and Q is defined as Q(k|l) = Z,l

k_ The definition also
n/2

holds for directed and weighted networks. The network portrait is a
powerful summary of the topological features of the graph, such as
the number of nodes and edges, the distribution of the next-nearest
neighbours, the degree distribution, and the number of shortest
paths of length I that can be recovered from B.

Clustering coefficient C(p) is another metric used by Watts &
Strogatz (11) and it reflects the degree of connectivity between the
neighbouring nodes. Low clustering coefficient suggests sparsely
connected neighbouring nodes.

Definition 10 (Degree distribution P (k)). Network node degree
distribution is defined as the probability that a randomly selected
node in the graph has degree k, i.e., number of edges incident to it.
Formally it is defined as follows:

P(k) = =, 1)

where ny, is the number of nodes with degree k in the graph and n
is the total number of nodes in the graph.

Definition 7 (Network Portrait Divergence). The Net-
work Portrait Divergence D js(G,G’) between two graphs G and
’ 4s the Jensen-Shannon divergence as follows, D;s(G,G') =
1KL(P||M) + 1 KL(Q||M) where M = (P + Q) is the mizture
distribution of P and Q.

The Network Portrait Divergence 0 < D jg < 1 provides a single
value to quantify the dissimilarity of the two networks by means
of their distance distributions, with smaller D jg for more similar
networks and larger D jg for less similar networks. Unlike the
KL divergence, D g is symmetric, D;5(G,G’) = D;5(G’,G) and
VD jg is a metric.

Network Portrait Divergence is relatively computationally effi-
cient, unlike graph edit distance measures, due to the fast that it
is based on a graph invariant and expensive optimizations such as
“node matching” are not needed.

Direct comparison of individual metrics

One of the most common approaches when measuring the similarity
between networks is to use a global metric on both networks and
compare how similar the result for both is. In order to compare
the network structures, several metrics have been developed to
measure various properties of the network. For starters the obvious
metrics for measuring the similarity of networks are number of nodes
and number of links in the network, largest connected component,
average and maximal degree, and diameter of the network, i.e
longest shortest path between any two nodes in the network.

The degree distribution (12) of a network reveals the network con-
nectivity properties. It provides information about the prevelance of
nodes with low or high degrees, as well as heterogenity of the node
degrees. The degree distribution in a random network (ER) follows
a Poisson distribution, while in a scale-free network, the degree
distribution follows a power-law distribution, i.e., P(k) ~ k~7. For
two networks to be similar, they need to have the same degree
distribution, with similar v coefficients.

Definition 11 (Degree distribution P(k)). Network node degree
distribution is defined as the probability that a randomly selected
node in the graph has degree k, i.e., number of edges incident to it.
Formally it is defined as follows:

P(k) = 2%, 2

where ny, is the number of nodes with degree k in the graph and n
is the total number of nodes in the graph.

The degree distribution (12) of a network reveals the network con-
nectivity properties. It provides information about the prevelance of
nodes with low or high degrees, as well as heterogenity of the node
degrees. The degree distribution in a random network (ER) follows
a Poisson distribution, while in a scale-free network, the degree
distribution follows a power-law distribution, i.e., P(k) ~ k~7. For
two networks to be similar, they need to have the same degree
distribution, with similar v coefficients.

Definition 8 (Characteristic Path Length L(p)). The charac-
teristic path length is a metric that measures the typical separation
between two vertices in the graph. The equation of the characteristic

path length is as follows:
53

17&1
where N is the total number of vertices in the network, d(i,j) is
the shortest path between vertices i and j, and ZZ ; sums over all

L(p) = N(N

pairs of vertices in the network.

Definition 12 (Assortativity and Dissasortativity). Assor-
tativity and disassortaty is a single measure that describes the
tendency of nodes in a network to connect to other nodes of the
network with similar or different characteristics, respectively.

The characteristic path length L(p) is a metric used by Watts &
Strogatz (11). It measures the average shortest path over all pairs
of vertices, and is therefore a measure of a global property. The
L(p) is an indicator of how well the network is interconnedted. Less
interconnedted network reflects a larger L(p), e.g. a chain network.
This property reflects the efficacy of the (information) transmission
through the network.

Network can be degree assortative, if nodes with similar degrees
connect to each other. Conversely, in a degree dissasortative net-
work (13), nodes with different degrees tend to be connected to
each other, i.e., the difference between the degrees of average nodes
is substantial.

Definition 13 (Pearson Degree Mixing Coefficient).

;e Z kK (eprr — qug) 3]

re Y F—a)— (), kap)?

Definition 9 (Clustering Coefficient C(p)). The clustering
coefficient is a metric that measures the cliquishness of a typi-
cal neighborhood. The equation of the clustering coefficient is as
follows:

C(p) = 3 * (# of triangles)/(# of triplets)
where number triangles equals to number of closed triplets in the
graph, and number of triplets equals to both number of closed and
open triplets

: 5 e . (k41
where gj, is the neighbour excess distribution, that is (2—):;'#—1,

k and k' are the degrees of nodes. The Pearson correlation coefficient
r ranges from -1 to 1, where values close to 1 indicate degree
assortativity and values close to -1 indicate degree disassortativity.
A value of aproximately 0 indicates no correlation.

Definition 14 (Strongly Connected Component). Strongly
connected component in a directed graph is a maximal subset of
network vertices, in which each vertexr can be reached from every
other vertex in this subset by following a directed path.

4 | Introduction to Network Analysis 2022/23

Velikajne et al.




Tendrils
44 Milion nodes

o
Tubes

,C L
Disconnected components

Fig. 3. Bow-tie network decomposition from (18).

Definition 15 (Bow-tie Decomposition). Bowtie network de-
composition decomposes the network to following subsets:

e In-component: The subset of nodes that can reach SCC.

e Out-component: The subset of nodes that can reached from
the nodes in the SCC.

e SCC: The strongly connected component of the network.

e Tendril: The subsets of nodes that can be reached the In-
component or that can reach the Out-component.

o Tubes: The subsets of nodes that creates a passage from the
In-component to Out-component without touching the SCC.

e Disconnected components: The subsets of nodes that do not
connect to none of listed subsets of nodes.

The bow-tie decomposition was introduced by Broder (18) and
is visualized in Figure 3

Statistical comparison over multiple metrics

Single metric comparisons can provide useful insight into certain
aspects of a network structure. However, no single metric can
fully capture the complexity, diversity and similarity of network
structures. Solely relying on a single metric can lead to wrong con-
clusions about the network similarities or dissimilarities. Subelj et
al. (1, 2) propose a statistical comparison of networks over 21 in-
dividual graph statistics which are not independant on each other.
At first, metrics are externally studentized, i.e., statistically signifi-
cant inconsistencies in individual graph statistics are identified over
all comparable networks. Pairwise independence of the selected
statistics is verified using Fisher z-transformation and z-tests. The
Friedman rank test is used to confirm significant inconsistencies
between bibliographic databases, and the Nemenyi post-hoc test
is applied to identify databases with no statistically significant dif-
ferences. The results are presented using mean ranks and critical
difference diagrams. Ranking is a preferred method over simple
summation while comparing networks over multiple statistics be-
cause it ensures a fair and unbiased comparison. When different
networks are compared over multiple statistics, it is likely that some
networks will be more similar on some statistics while others will
be more similar on other statistics.

Discussion

The paper addresses the challenge of effectively comparing graphs,
specifically in the context of larger networks. It presents vari-
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ous approaches and discusses the associated challenges related to
graph comparison and comparison metrics. The paper includes
network comparison methods like isomorphism and graph edit dis-
tance, which are known as NP-problems, as well as more efficient
approaches such as comparison by fragments and distances. Addi-
tionally, the paper explores the comparison of individual metrics
and multiple metrics. To enhance understanding, relevant examples
are provided, and comprehensive definitions are included to provide
a better overview of the comparison process. The authors allocated
the work equitably with the assistance of an online random wheel,
thereby asserting equal contribution to the paper.
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