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Sampling is a fundamental technique in network analysis used to
reduce the size and complexity of graphs while preserving important
properties. This article explores various sampling methods, including
random selection, exploration techniques, and merging/aggregation
methods, and their impact on network properties. The preservation
of density and community structure are highlighted as key consid-
erations in sampling. The self-similar scaling behavior of density
allows for accurate insights into network characteristics using repre-
sentative subsets. Different sampling techniques exhibit variations
in preserving community structure, with some methods promoting
community-like groups while others generating module-like groups.
Overall, sampling enables efficient analysis, visualization, and infer-
ence in network analysis, providing valuable insights into complex
networks.

S ampling refers to the technique of selecting a sub-
set of vertices and/or edges from a larger, original
graph. It has a broad range of applications in various fields,
such as sociology, visualization, graph sparsification, and more.
The motivation behind sampling is often to obtain a smaller
graph that is more manageable for analysis and exploration.
It can be applied when the entire graph is known, aiming to
reduce its size, or when the graph is unknown, serving as a
means to discover its structure.

Different sampling techniques, such as Vertex Sampling,
Edge Sampling, and Traversal Based Sampling, are commonly
used to achieve specific objectives. The article presents a
taxonomy of graph sampling objectives and approaches, high-
lighting the relations between these approaches and providing
a framework that connects theoretical analysis with practical
implementation. One key interest lies in understanding which
graph properties are preserved during the sampling process.
If certain properties are preserved, efficient estimators can
be constructed, and algorithms relying on those preserved
properties can be expected to yield similar outputs on both
the original and sampled graphs. This opens up avenues for
accelerating graph algorithms systematically (1).

While sampled graphs are smaller in size, they may still
exhibit similarities to the original graphs. The article explores
the preservation of various classical and advanced graph prop-
erties and points out gaps in the existing research. While
some theoretical studies and extensions are collected, a more
systematic and neutral evaluation is necessary to shed light
on further advancements in graph sampling studies.

Real-world networks pose challenges due to their large and
evolving nature, and sampling offers a solution for their anal-
ysis and understanding. By reducing a network to a smaller
sample, analysis and visualization become more feasible. More-
over, understanding the differences between complete original
networks and their incomplete variants is crucial. Studies on
network sampling have analyzed changes in network proper-
ties, such as degree distribution, clustering, connectivity, and
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more. Various sampling techniques have been compared based
on their ability to preserve network properties, and efforts
have been made to detect and correct biases in the sampling
process. However, despite these endeavors, there is still much
to be understood about the structural changes introduced by
sampling and how network structure affects the performance
of sampling techniques (2).

1. Overview

Snowball sampling, contact tracing, and random walks are
network-based techniques used for sampling hidden popula-
tions in social network studies. These techniques are par-
ticularly valuable when studying populations such as drug
users or illegal immigrants who are difficult to locate and
interview. Snowball sampling involves identifying an initial
member of the target population and then using their social
network connections to find additional participants (Figure 1).
This process creates a "snowball effect" and allows for a larger
sample size (3).
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Fig. 1. Node/link selection and snowball sampling on networks.

Snowball sampling can be biased and may not provide accu-
rate samples. Contact tracing, a similar technique used in dis-
ease incidence studies, traces the contacts of infected individu-
als to control outbreaks and collect data on disease spread, but
it also has biases and incomplete samples. Random-walk sam-
pling improves on bias issues by randomly selecting contacts for
interviews, but it can be time-consuming. Respondent-driven
sampling addresses the inability to directly name contacts by
providing participants with tickets to distribute to acquain-
tances. However, it introduces challenges such as non-random
distribution and participation refusal. Despite limitations,
these techniques are widely used in social network studies
to gain insights into hard-to-reach populations and disease
transmission networks. (3).

Fractality and self-similarity are intriguing properties ob-
served in real networks, revealing remarkable patterns within
their structures.
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Definition (Fractality) Fractality refers to the
property of an object where it exhibits similarity to a
part of itself, regardless of the scale of observation.

This means that zooming in or out on different sections of
the object reveals similar patterns or features. In the context
of real networks, fractality implies that the network displays
recurring motifs or structures that are present at various levels
of organization, from local to global.

Definition (Self-similarity) Self-similarity refers
to the property of an object where it exhibits similar
patterns or structures at different scales or levels of
magnification

This suggests consistent patterns and behaviors at different
scales, indicating universal organizing principles that are inde-
pendent of network size. This understanding provides valuable
insights into the formation and evolution of complex networks.
Fractality and self-similarity highlight recurring patterns and
organizational principles, unraveling the fundamental mecha-
nisms shaping real networks (4).

n Real networks, like social or information networks,
are complex and vast. However, any observed net-
work is merely a sample of the true under-
lying network. Sampling involves selecting a sub-
set of nodes for analysis, and it can greatly impact
the observed network’s characteristics, especially its
community structure. Sampling often promotes the
formation and preservation of community structure
in the observed network, leading to a stronger com-
munity organization compared to the true network.
This recognition emphasizes the limitations and biases
introduced by sampling in studying real networks (2).

A. Sampling motivation.

A.1. Whole data is not available. When you are limited by the
API call limit or some similar restriction, you can make a
sample of the graph by using one of the sample methods. You
must know what is the point of interest to choose used method
accordingly. In other words, you should know which graph
properties are preserved by using the respective method.

A.2. Hidden population. Sampling nodes from a graph when not
all nodes are directly observable or accessible. It arises when
there is a subset of nodes in the graph that cannot be easily
identified or included in the sampling process. Sampling from
a graph with a hidden population can be challenging because
the nodes of interest are not readily available for selection.
Snowball sampling is often used in sociology to study a hidden
population like drug abusers. They start the study with a
small set of participants and expand it from there.

A.3. Visualization. Sampling is often used to facilitate easier
visualization of large or complex graphs by reducing their size
while preserving important structural characteristics.Large
graphs can have thousands or even millions of nodes and
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edges, making it challenging to visualize them effectively. By
sampling a subset of nodes and edges, the graph’s size can
be significantly reduced, allowing for better visualization on
limited screen space.

A.4. Reduce test cost. Graph sampling can contribute to cost re-
duction in testing by reducing the scale and complexity of the
graph being tested. Graphs can be computationally expensive
to analyse, especially when dealing with large-scale networks.
By sampling a subset of the graph, the computational and pro-
cessing time required for testing can be significantly reduced.

B. Property preservation and property estimation. Property
preservation and property estimation are closely related to
each other. Preserving properties means ensuring that essen-
tial structural or statistical features of the original graph are
retained after a particular operation or transformation is ap-
plied. If a graph is subjected to graph sparsification (reducing
the number of edges while preserving key structural features),
the goal is to preserve important properties such as connec-
tivity patterns, clustering coeflicients, or degree distributions.
The aim is to create a sparser graph that still reflects the
original graph’s key properties and characteristics.

Property estimation, involves inferring or approximating
specific properties of a graph based on a sample or subset of the
graph’s data. The goal is to estimate or predict various graph
properties or characteristics when it is not feasible or practical
to analyse the entire graph. If a graph is extremely large and
computing certain properties directly is computationally ex-
pensive or time-consuming, property estimation techniques can
be used to provide approximate values or statistical estimates.

Property preservation ensures that key properties are re-
tained, while property estimation provides estimates or ap-
proximations when direct computation of properties on the
entire graph is not feasible.

2. Methods

Properties that the method preserves are highlighted in green,
properties that are not accurately captured by the method are
highlighted in red.

A. Random selection methods for global network sparsifica-
tion. Sparsification is the process of reducing the number of
nodes and/or links in the network while attempting to main-
tain its key structural and functional properties. For global
network sparsification we use the following techniques (Fig.
2):

e Random Node Selection (RNS): Randomly selects nodes
from the original network to form the sampled network. It
does not consider any structural properties or connections
between nodes during the sampling process.

e Random Node Selection by Degree (RND): Randomly
selects nodes from the original network with a probabil-
ity proportional to their degrees. Additionally, all the
links connected to the selected nodes are included in the
sampled network.

e Random Link Selection (RLS): RLS randomly selects
links from the original network to construct the sampled
network. Similar to RNS, it does not consider the network
structure or the connectivity between nodes.
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e Random Link Selection with Induction (RLSI): RLSI uses
subgraph induction by selecting links randomly and in-
cluding the nodes connected by those links in the sampled
network. This technique preserves local structural prop-
erties by considering the connectivity between nodes.
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Fig. 2. Random selection techniques applied to a small toy network. Highlighted
nodes and links represent the samples obtained by different techniques (5)

B. Network exploration methods for local network sampling.
In this family of sampling techniques, the general approach in-
volves randomly selecting a node and exploring its neighboring
nodes (5, 6).

o Snowball sampling (SBS): It is a non-probability sampling
technique, and it is often used in social science research.
It is particularly useful when studying hidden populations.
The goal is to sample nodes from a graph based on their
connections. In snowball sampling on graphs, the process
starts with selecting a set of initial nodes, often called
"seeds," from which the sampling procedure begins. These
seeds can be chosen randomly or based on specific criteria,
such as high degree centrality or other relevant network
measures. The initial set of nodes represents the starting
point for the snowball sampling process.

o Breadth-first exploration sampling (BFS): A seed node is
randomly selected, and its broad neighborhood obtained
from a breadth-first search is included in the sample. BFS
tends to select nodes with higher degree and performs
well in matching degree distribution, average degree and
clustering coefficient distribution but underestimates de-
gree and betweenness centrality exponent. BF'S is very
similar to Snowball sampling (SBS). BFS exhaustively
expand the neighbourhood of current vertex while SBS
only expands a fixed number of them.

o Forest-fire sampling (FFS): A broad neighborhood of
a randomly selected seed node is retrieved using partial
breadth-first search. The number of sampled links on each
step follows a geometric distribution with mean p/(1 — p),
where p is set to 0.7. FFS matches spectral properties well
but fails to match path length and clustering coefficient.

e Random walk sampling (RWS): A random walk is simu-
lated on the network, starting from a randomly selected
seed node. The sample consists of links visited by the
random walker, forming a connected subgraph. RWS
performs well in matching transitivity, clustering coeffi-
cient distribution, and spectral properties but is biased
towards nodes with high degree and fails to match degree
distribution.

o Metropolis-Hastings random walk (MHRW): A random
walk is simulated on the network, and on each step, the

next-hop node is selected uniformly at random among
the neighbors of the current node, or the random walker
performs a self-loop. MHRW corrects the bias of RWS
towards selecting nodes with higher degree but may get
stuck in local communities.
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Fig. 3. Exploration techniques applied to a small toy network. Highlighted nodes and
links represent the samples obtained by different techniques (5)

e Random Node Neighbor (RNN) Sampling: In RNN, a
node is randomly selected along with all its outgoing
neighbors. This technique imitates reading an edge file.
It matches the out-degree distribution well but may not
accurately capture in-degrees and community structure.
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Fig. 4. Diagram of retained properties after application of different sampling methods.

C. Merging/aggregation methods for network simplification.
Merging or aggregation methods simplify networks by com-
bining nodes or groups of nodes into larger entities. These
techniques reduce network complexity while preserving struc-
tural characteristics (4).

e The boz covering method: It is used to understand the
scale-invariant properties (degree distribution, fractal di-
mension) of networks. It involves dividing the network
into boxes based on node distances (Figure 5). If we cover
the percolation cluster with Np boxes of linear size /g.
The fractal dimension or box dimension dg is then given
by

Ny ;%
The renormalization process replaces each box with a

single node, preserving properties like the degree distri-
bution. Finding the minimum number of boxes to cover
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the network is challenging, but different coverings yield
the same exponent. The method provides insights into
network structures and their self-similar properties (4, 7).

e Cluster growing: In complex networks with broad degree
distributions, the box counting method is not directly ap-
plicable. Instead, we can use the cluster growing method
as an alternative. In this method, a seed node is ran-
domly chosen, and a cluster of nodes connected to the
seed is grown by considering a minimum distance (£) be-
tween nodes. This process is repeated for multiple seed
nodes, and the average "mass" of the resulting clusters
((M.), defined as the number of nodes in the cluster) is
calculated as a function of . It is a technique used to
analyze the self-similar properties of complex networks
with broad degree distributions, and it provides insights
into the scale-invariant behavior of these networks (4, 7).

o Community aggregation: is an expansion method in net-
work sampling that preserves the community structure.
It involves grouping nodes into communities and select-
ing representative nodes from each community for the
sample. This approach simplifies the network while re-
taining important community properties, making it useful
for analyzing large-scale networks with complex commu-
nity structures. It provides a manageable sample that
allows researchers to study community characteristics and
dynamics effectively.
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Fig. 5. Box covering method. The system is divided into boxes of size ¢, with
each box containing nodes connected within a minimum distance £ 5. The boxes are
then replaced by renormalized nodes, and connections between renormalized nodes
are established based on the connections between the original boxes. This process
simplifies the network while preserving connectivity patterns. (4)

3. Comparison

A. Density. Network density refers to the number of connec-
tions within a network. It is determined by the proportion
of actual connections in the graph with all the possible con-
nections. Typically, it is calculated as the ratio of the actual
number of connections divided by the number of all possible
connections between nodes. Result ranges between 0 and 1,
where the first means that the graph is not connected at all
and the second tells us that we have a fully connected graph.

Certain self-organized networks display some properties
relating to the density of connections and the size of the
network. A notable example is found in utility networks
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across various European countries, where despite significant
variations in size, the average degrees of these networks tend to
be similar. In the article named Universal fractal scaling of self-
organized networks (8), they examined the size and connection
density of 47 self-organized networks of various origin. There
was an obvious linear relationship between the network size
N and the connection density d. They fit the data with d =
7.89N 0986 and it revealed a power law relationship between
the size and density of the networks. The scaling exponent
tends towards negative one, signifying a fractal nature with
1/f properties. Despite the vast diversity of networks, there is
a power law association between size and density.
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Fig. 6. Relationship between network size and density on logarithmic scale. Every
point corresponds to a network based on existing literature. (8)

The observation of self-similar scaling in the density of
real-world networks implies that the density exhibits a scale-
free characteristic. In other words, as the network grows
larger or undergoes renormalization, the density follows a
specific pattern of increase or decrease, but its overall value
remains consistent. This indicates that the density scaling
is independent of the specific level of detail or resolution at
which the network is examined. The connection between self-
similar scaling of density and sampling lies in the preservation
of density properties during the sampling process. The self-
similar scaling behaviour suggests that sampling a subset from
a larger network can provide valid insights into the density
characteristics of the entire network. This enables researchers
to analyse complex networks efficiently and draw meaningful
conclusions based on representative subsets. (9)

B. Communities. A property which appears in many networks
is community structure. Where nodes are more densely con-
nected to each other within their own community than to nodes
in other communities. Communities are groups of nodes that
exhibit strong internal connectivity and relatively weaker con-
nectivity with nodes outside their community. Understanding
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Fig. 7. Power-law scaling relationship between network density and size of 50 di-
verse real-world networks, using various renormalization techniques. Green triangles
representing the original networks and blue circles representing their renormalized
versions. The size of the symbols reflects the number of networks sharing the same
size and density. (9)

community structure in graphs is crucial for various applica-
tions, as it reveals underlying patterns, functional modules,
and organizational principles within complex networks.

In the article named, Sampling promotes community struc-
ture in social and information networks (2), they defined S as
groups of nodes and T as the subset of nodes that represents a
linking pattern. In other words, the pattern of nodes connec-
tions from S to the other nodes. Nodes in set of T are chosen to
maximize the number of links between S and T and minimize
the number of links between S and T complement. When S
= T it characterizes community and S N T = () characterizes
modules. Those are two extreme cases, and everything else
are groups that are mixtures of the two.

The Jaccard index is defined as:

|SNT|

7(8,T) = ISUT]

7 € [0, 1], and it can determine the type of group and corre-
sponding linking pattern T. When 7 = 1 there are communities
and 7 represents modules. In between are mixtures.

RLS and FFS performs different from other methods. Their
samples contain fewer groups, and almost all groups are mod-
ules, so the parameter 7 approaches zero for all the networks.
In comparison, of the original network to sampled one, those
two methods contain fewer links from the original network. In
numbers that means that sampled networks contain only 3%
links of the original while other methods consists of around
16% of original links and that means that those networks are
much sparser. For that percentage to mean something, we
must state that created samples are 15% of original networks.

The performance of RLS and FFS can be understood based

Fig. 8. Density of network structure in renormalized versions of three distinct real-
world systems. Green triangles represent original networks and blue circles represent
renormalized networks. (9)

Fig. 9. An example of community structure. There are three communities that are
densely connected, and there is much lower density of connection between each of
them. (10)

on their respective definitions. In RLS, the sample includes
randomly selected links, resulting in high variance. Conse-
quently, the sample often contains numerous components with
sparse connections, exhibiting a structure resembling modules.
In contrast, FFS generates samples consisting of a single con-
nected component. As a result, the sparsely connected nodes
also form groups that exhibit module characteristics.

RND, RLI, BFS, and EXS perform similarly across all
networks. In sampled information networks, the presence of
mixtures decreases while communities become more prominent.
As a result, the value of 7 is higher in the sampled networks
compared to the original networks. By comparing the number
of groups and the parameter 7 between the original networks
and their samples, findings demonstrate differences. The orig-
inal networks exhibit a considerably greater number of groups
with a notably smaller 7 compared to the sampled networks.
The sampled social networks exhibit a larger parameter T,
indicating the presence of more community-like groups, while
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(a) Community (b) Module

Fig. 10. Toy examples of groups of nodes in networks. Densely connected groups of
nodes where S = T and disconnected groups where SN T = (. (2)

the sampled information networks display fewer module-like
groups. These results highlight alterations in the network
structure caused by the sampling process, regardless of the
network type or the specific sampling technique employed.

In RND, nodes with higher degrees are more likely to
be included in the sample, and a similar bias is present in
RLI. Consequently, densely connected groups of nodes have a
higher probability of being sampled, while sparser regions of
the network are not. On the other hand, BFS and EXS sample
the broader neighbourhood of a randomly selected seed node,
resulting in a sampled network that represents a connected
component. BFS is biased towards sampling nodes with higher
degrees and tends to overestimate the clustering coefficient.

To summarize, alterations in the structure of node groups
introduced by sampling persist across different network types
and various sampling methods.

4. Practical example - Estimation by random-walk sam-
pling

1. Simplifying the representation of networks, we utilize sim-
ple undirected graphs and focus solely on their largest
connected component. In our case, we have 5 different
networks: Java class dependency network (java.net), nec
overlay map of the Internet (nec.net), sample of Facebook
social network (facebook.net), Enron e-mail communi-
cation network (enron.net), and a small part of Google
web graph (www__google.net). The data is represented in

table 1.

Table 1. Network Statistics
Graph Nodes Edges Degree
‘java’ 2,378 (0) 14,619 (0) 12.30 (2,166)
‘nec’ 75,885 (0) 357,317 (0) 9.42 (13,346)
‘facebook’ 63,392 (0) 816,831 (0) 25.77 (1,098)
‘enron’ 84,384 (0) 297,314 (1,425) | 7.05 (1,728)
‘www_google’ 855,802 (0) 4,291,352 (0) 10.03 (6,332)

2. Applying a random-walk sampling technique, we repeat-
edly sample nodes from the networks until we have sam-
pled 15% of the total nodes, allowing for duplicates. Let’s
denote the number of sampled nodes and their correspond-
ing degree sequence as s and ki, ..., ks respectively. To
estimate the average degree of the network, we employ a
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biased average

Zi ki

S

and also determine a corrected estimate
s
-1
>k

Code:

def estimate_k(G, sample = 0.15):
g = [1ist(G[i]) for i in G.nodes()]

i = random.randint(0, len(g) - 1)
sumk, sumk_1 = len(gl[il), 1 / len(glil)
s =1

while s < sample * len(g):
i = random.choice(g[il)
sumk += len(g[il)
sumk_1 += 1 / len(glil)
s += 1

return sumk / s, s / sumk_1

3. Comparing both estimates to the true average degree of
the network, we can see that the corrected estimate is
much closer to ground truth (table 2).

Table 2. Biased average vs. corrected estimate

Graph True av. degree | Estimated | Corrected
java’ 12.30 598.61 11.87
‘nec’ 9.42 1303.37 9.70
‘facebook’ 25.77 90.12 26.51
‘enron’ 7.05 168.39 6.86
‘www_google’ 10.03 172.52 9.80

Conclusions

In conclusion, sampling is a vital technique in network analysis
that helps reduce the size and complexity of graphs while pre-
serving important properties. It allows for more manageable
analysis and visualization of large networks. Sampling meth-
ods, such as random selection and exploration techniques, as
well as merging/aggregation methods, are employed to achieve
specific objectives. Density and community structure are two
essential properties affected by sampling. The self-similar
scaling behavior of density allows for valid insights into net-
work characteristics using representative subsets. Sampling
techniques also impact community structure, with some meth-
ods promoting community-like groups while others generate
module-like groups. Overall, sampling enables efficient analy-
sis, visualization, and inference, leading to valuable insights

in network analysis.
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