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Almost any system, let it be biological, technological, or social, can
be represented in a form of a network. To learn possible interactions
and underlying concepts of these networks, we can analyze them
on different levels. For example, we can analyze networks on a link
level by considering links as building blocks of networks. However,
analysis on such a level is sometimes too fine-grained. An alternative
approach is to characterize and discriminate networks with different
kinds of building blocks — sub-graphs or fragments. Depending on
whether these sub-graphs are induced or not, we can further divide
them into two groups — graphlets and motifs. In this project, we
discuss the motivation and history of using graphlets and motifs in
network analysis. We present the concepts of graphlets and motifs
and provide the mathematical theory that is required to understand
these concepts. Furthermore, we show how we can use graphlets
and motifs in practice through a few short practical examples.

P roblem definition, motivation, and background.
Network analysis has many useful applications in fields such
as biology, sociology, etc., as a variety of real-world systems
can be represented in a form of a network. By analyzing
networks we are learning the interactions within the systems
which could otherwise stay undiscovered. Different approaches
for studying networks have been proposed, including looking
at the networks from a subgraph perspective. By doing that
we are looking at the network’s basic structural elements and
identifying underlying patterns.

Analyzing networks by studying their subgraphs dates back
to 1974, when Holland and Leinhardt (1) introduced the triad
census. It is defined as a vector of 16 components, that
represent 16 isomorphism classes for digraphs with 3 nodes
(see Figure 1). They can be used for the examination of local
structural properties by comparing their count distributions
across different real and random networks.

Milo et al. (2) further generalize the idea and define network
motifs, as patterns of interconnections occurring in complex
networks at numbers that are significantly higher than those
in randomized networks. They show that motifs vary across
networks from different domains and that we can use them
to differentiate between biology, neuronal, information, social,
and language networks. But to classify a subgraph as a certain
motif, we need to investigate its frequency in a random graph
and compare it to the frequency in the investigated graph.

Because this is a costly process and not a trivial task,
Przulj et al. (3) define graphlets - small connected and induced
subgraphs of a given simple undirected graph. Graphlets can
be used to characterize local neighborhoods around nodes,
instead of on a network level as motifs. They have been
widely utilized in biology (4-6), computer networking (7-9),
chemoinformatics (10), and for image segmentation (11).
Graphlets and motifs are used in network comparisons, as
they have proven to be effective in network characterization
and discrimination, and are a popular research field (12). In
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Fig. 1. The 16 isomorphism classes for digraphs with 3 nodes. These graphs
represent triad census, which is a predecessor of motifs. By omitting 003, 012, and
102 we get all 13 directed three-node motifs.Triad naming convention: the first digit
represents the number of mutual diads, the second digit represents the number of
asymmetric diads, while the third number represents the number of null diads. Further
letters differentiate among triad types.

the literature, people often use the terms graphlets and motifs
interchangeably, however, in the following sections we define
them as in the original papers, where they were introduced.
Additionally, we explain the differences between them.

The most frequent use of graphlets and motifs is for the
network analysis. For that reason, we further explore mathe-
matical concepts which will help us define graphlets and motifs
more precisely and show how they can be useful for network
analysis.

1. Mathematical theory

In this chapter, we assume that the reader is familiar with
network concepts and basic terminology of graphs (e.g., degree
of a node) and some mathematical concepts (e.g., bijection).

Theorem 1.1 (Subgraph) We can define subgraph
Gs = (Vs, Es) (with vertices Vs and edges Es) of a
graph G = (V, E) (with vertices V and edges E) as a
graph, for which Vo, CV and E; C E.

Theorem 1.2 (Fragment) We say a subgraph
Gs = (Vi, Es) is connected, if Yv,u,v € Vs,u € Vg
there exists a path between them. Connected subgraphs
are also called fragments.

Following the definition of a subgraph, we can also define a
notion of the induced subgraph, which is just a special case of
a subgraph.

Projectreport | May 28,2022 | 1-7



Theorem 1.3 (Induced subgraph) A subgraph
Gs with vertices Vs and edges Es of graph G with
vertices V and edges E is said to be induced, if and
only if V(u,v) € Es <= (u,v) € E.

The definition of an induced subgraph states that two vertices
u, v in G, are adjacent in G if and only if they are adjacent
in G, or in other words G5, has the same edges as G between
vertices of Gs. We show an example of a graph, subgraph, and
induced subgraph in Figure 2.

S N

Graph Subgraph Induced subgraph

Fig. 2. Top row shows the original graph. Second row shows a subgraph, but it is not
induced, as edge between the left and the right node is missing. Bottom row shows
the induced subgraph.

Now we are familiar with the definitions of a subgraph and
induced subgraph, but to present the concept of graphlets and
motifs, we also need to define the isomorphism and automor-
phism of a graph.

Theorem 1.4 (Isomorphism) An isomorphism of
graphs G1 and G2 is a bijection between the sets of
vertices Vo, and Vg, denoted as f : Vo, — Vs,
where adjacency of vertices is preserved, i.e., if edge
{u,v} € G1, then {f(u), f(v)} € G2. Furthermore,
the number of links in the isomorphic graph G2 must
be the same as in the original G;.

Theorem 1.5 (Automorphism) An automor-
phism of a graph G = (V, E) is a permutation of
o :V =V, such that the pair of vertices (u,v) form
and edge < (o(u),o(v)) also form an edge. In
other words, it is graph isomorphism from G to itself.
Automorphisms of graph G form a group called the
automorphism group of G denoted by Aut(G).

Informally, graphs are isomorphic if they have the same edge
structure (the same topology) if we ignore the distinction
between individual nodes. We show an example in Figure 3.
We now have enough mathematical knowledge and background
to define motifs and graphlets, and explore how to use them
in network analysis.

2. Motifs

Definition 2.1 (Motif) Motifs are recurring pat-
terns of interconnections in the network. More pre-
cisely, they are frequent non-induced fragments.

Motifs can be composed of different amounts of nodes. Motifs
can be undirected or directed subgraphs. We can see all the
examples of directed three-node motifs in Figure 4.
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Graph G CEphis between G and H
fla)=1
fb)=6
fle)=8
fid)=3
flg)=5
fihy=2
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Fig. 3. Figure shows original graph G and graph H that is isomorphic to G. We see
that both graphs have the same edge structure or the same topology, if we ignore the
distinction between individual nodes. Source: Wikipedia.
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Fig. 4. All motifs composed of 3 nodes on directed graphs. Source (13).

They frequently appear in real networks. Giant networks are
very hard to analyze and here motifs prove to be particularly
relevant when describing the architecture of real-life networks.
Motifs with a smaller amount of nodes can be represented as
building blocks of large networks and can help us understand
how networks work. Some motifs (usually those with fewer
nodes) appear more often in networks than others. When
looking for motifs, we allow them to overlap.

We can measure the significance of a motif based on how
many times it appears in the network. We define motif sig-
nificance as the function of expectation for a motif to occur
in a graph, given its size. First, we generate a random graph
in such a way that it has similar basic characteristics as the
original, which we use to compute the significance.

Definition 2.2 (Significance) Significance is de-

Nreal _(yrandy
L i
fined as Z; (N7

the number of motifs of type i in our real network
and N7 represents the expected number of motifs
of type i in the random graph (14).

, where NI*% represents

As we can see, significance is defined as a normalized z-score.
We can also define Network significance profile, which can serve
as a oracle for comparing networks. We show an example in
Figure 8 where we can see which motifs are over or under-
represented in different types of networks. By only inspecting
the plots, we can already differentiate some network types
from others as some motifs are over-represented in one type
of network, while under-represented in other types.



Definition 2.3 (Network significance profile)
Network significance profile (SP) is deﬁned as a

vector of normalized Z-scores SP; = \/j
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Fig. 5. Significance profile of size-3 motifs in four different types of networks (y-axis
shows significance profile (SP) for each network). We can see that the same types of
networks have similar SP (e.g., social networks have similar SP). Source: Milo et al.

@).

To compute a representative value for significance scores, we
have to generate an appropriate random graph. The optimal
solution is generating a random graph, that has the same
number of nodes and edges as the original graph and also the
same degree sequence as the original. For this purpose, we
can use different methods.

1. Configuration model. With a given degree sequence,
we can represent vertices as stubs (15). In every iteration, we
choose two random stubs and connect them, until no stubs
are left. The end result is a random graph that very closely
resembles the original. We can ignore double edges and self
loops because, on a large real-life network, these omitted links
will represent small noise. We show an example in Figure 6.

I[:>

Randomly pair up P —
Resulting graph

We ignore double edges and self-loops when creating the final graph

X —>
Do o
Nodes with spokes‘

Fig. 6. Example of constructing a random graph using a configuration model. Source:
(13)

2. Switching (Rewiring). We start with a given graph
G. In each iteration we choose two pairs of connected nodes
(A — B, C — D) and we switch the endpoints (A — D, C —
B). We repeat this @ - |E|, where Q needs to be large enough
for the process to converge. This process is much slower than
the Configuration model.

We can use another measure called abundance ratio, which
is less dependent on network size.

Definition 2.4 (Abundance ratio) Abundance
Nreal _(yrand,
Nireal+<Nirand>+E7
N7 gnd N7 are defined as in definition 2.2 and
€ ensures that |0;| is not misleadingly large, when
there are very few appearances of a certain subgraph

in both real and random graph (2).

ratio is defined as 0; = where

Similar to how significance profile is defined using significance,
the abundance ratio is used in abundance/ratio profile.

Definition 2.5 (Abundance/ratio profile)
The subgraph abundance/ratio profile (SRP) is a
normalized vector of abundance ratios §; for each

motif it SRP; = \/ﬁ

3. Graphlets

Definition 3.1 (Graphlet) Graphlets are
isomorphic, induced fragments (3).

non-

We show the difference in counting graphlets and motifs in
Figure 7. We see that we have only one triangle and one
connected triplet when talking about graphlets (because they
are induced and we have to consider all edges between three
nodes), while we have 5 linked triplets. Motifs are not induced,
and we can drop edges when counting them.

Graphlets Motifs

(& 1 1
. 2 5

Fig. 7. Identifying graphlets and motifs on the same graph.

In Figure 10 we show all possible graphlets with 2, 3, 4, and
5 nodes. Notice that with an increasing number of nodes n,
the number of graphlets rapidly increases. Simply by counting
the number of graphlet occurrences in a network, we can define
relative graphlet frequency Fj.

Definition 3.2 (Relative graphlet frequency)
Relative gmphlet frequency F = {F;|i graphlet type},
where F; = Z = for number n; of graphlets i in

real network (3).

Consequently, we can define a distance between two graphs
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G1 and G2 based on relative graphlet frequency (3), as

D(G1,@5) = Z |Fi(G1) — Fi(G2)], (1]

which shows that we can easily use relative graphlet frequency
to compare the networks. In Figure 8 we show relative graphlet
frequencies for protein-protein interaction (PPI) networks and
four random networks from (3). We can see that random
networks have similar behaviour and relative frequencies, while
F of PPI is different.

Graphlet Frequencies in Yeast PPI and ER Networks
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Fig. 8. Graphlet frequencies of PPl and random graphs. We see that we can use
relative graphlet frequenciy to discern between graphs. Source: Przulj et al. (3)

We can also use graphlets for network analysis on a node level.
More specifically, we use graphlet degree distribution (GDD)
to measure the local structural properties of a network. To
define graphlet degree distribution, we first have to define the
automorphism orbit.

Definition 3.3 (Automorphism orbit) Let v €
V a node from graph G, and Aut(G) be the auto-
morphism group of graph G. Then we can define au-
tomorphism orbit of V as Orb(v) = {u € V]u = g(v)
for some g € Aut(G)} (16).

In Figure 10 we also show the automorphism orbits. For
example, Go has only one automorphism orbit. That is because
we have only one non-isomorphic position, meaning whether
we position ourselves at the top or the bottom node, we are
both times at the beginning of a chain. Similarly, in G2 we can
be at any of the three corner nodes, which always represent
the same position inside the triangle due to symmetry. To
understand graphlets with more than one automorphism orbit,
we can take a look at graphlet GGi, where the top and the
bottom black nodes denote one position (beginning of the
chain), while the white node denotes the middle position.
Similarly, orbits are shown and numbered for other graphlets.

Notice that the graphlet with 2 nodes (Go) is an edge.
Furthermore, to obtain a degree distribution of a network, we
count how many nodes touch one Go, how many nodes touch
two Go, and so on. Nothing prevents us from using the same
approach for other graphlets (G1—-G29), or more specifically for
other 72 automorphism orbits on these graphlets. For example,
we count how many nodes touch one triangle (graphlet G2),
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how many touch two triangles, and so on. As seen, for graphlet
G'1 we have two orbits, so we can touch graphlet G1 at two
positions. Thus, we count how many nodes touch one G, at
the end node (orbit 1), we count how many nodes touch two
G1 at the end, ..., but we also count how many nodes touch
one G; at the mid node (orbit 2), how many nodes touch
two G at the mid node, and so on. Analogous to the degree
distribution, we obtain 73 distributions, one for each orbit.
We denote these distributions as pi, where i represents an
orbit.

Definition 3.4 (i-th orbit GDD) We define i-th

orbit graphlet degree distribution p}, = %, where
Ny, represent how many nodes touch orbit i k-times.

Naturally, it holds ), pj, = 1.

Definition 3.5 (i-th orbit scaled GDD) For
i-th graphlet degree distribution pL, i-th orbit scaled
degree distribution is defined as py, = pi/k. (16)

Note that p? thus denotes the network’s degree distribution.
We see that scaled distribution is simply scaled by degree k,
thus we can use it when we want to decrease the contribution
of larger degrees.

Having defined the 73 graphlet degree distributions, we can
now define a network agreement measure. We do this as direct
comparison of 73 direct distributions is not intuitive. Network
agreement measure acts as a similarity measure denoting how
similar are the two networks.

Definition 3.6 (i-th orbit graphlet agreement)

We  define i-th _orbit  graphlet  agreement
Ai = 1 — /1> (@ —pL)> where Gi and P}

are i-th orbit graphlet degree distributions of network
G1 and G2, respectively.

Definition 3.7 (graphlet agreement) We define
graphlet agreement between graphs G1 and G2 as arith-
metic or geometric mean of i-th orbit graphlet agree-
ments A; (16):

1 . .
A= 73 Z A; (arithmetric mean) b

e

A= (ILA;)73 (geometric mean)

We see that graphlet agreement is simply arithmetic or geomet-
ric mean of i-th orbit graphlet agreements, and each i-th orbit
graphlet agreement is similarity between i-th orbit graphlet
degree distributions.

We can also take a different approach, and compute a
graphlet degree vector (GDV) with 73 coordinates correspond-
ing to each of the automorphism orbits for graphlets with 2
to 5 nodes. By that we get a signature of a node, describing
the topology of the node’s neighborhood. In this particular
case, we are describing the structure of a network around the
node at a distance of at most 4 hops™.

*We are considering graphlets up to 5 nodes



Definition 3.8 (graphlet degree vector)
Graphlet degree wvector of mode v is defined as
GDV(v) = {g?}, where g; is number of graphlets
that touch v at orbit i (17).

Graphlet degree vector provides a measure of a node’s local
network topology. We can compare two graphlet degree vectors
and obtain a highly constraining measure of local topological
similarity between them. Use case of graphlet degree vectors
in biology is to compute GDV for each node, and by that
identify groups of topologically similar nodes. Furthermore,
GDVs can be used to predict the biological properties of yet
uncharacterized nodes based on known biological properties.
See Figure 9 to see how GDV is calculated.

@@” O@@o@@o
O

Orbit 0 2

GDV | 2 1 1 0 0 1 0 0 0 0 0 0 0 0 0

Fig. 9. Example calculation of GDV. We have a simple undirected graph in which we
count orbits 0-14. Each replica of a graph above shows the orbits as colored edges.
We see that there are two 0-orbits, and one 1, 2, and 5 orbit.

4. Finding motifs and graphlets in networks

Finding out if a subgraph exists in the original graph is com-
putationally a hard problem. Complexity also grows with
the size of the subgraph, so the search is usually limited to
subgraphs of sizes from 3 to 8 nodes. Finding k-motifs and
graphlets requires us to:

1. Enumerate all size-k connected subgraphs.

2. Count the number of occurrences of each subgraph type
(with graph isomorphism test)

Determining, whether two subgraphs are isomorphic is an NP-
complete problem, which adds to computational complexity.
There are several algorithms for finding subgraphs:

o Exact Subgraph Enumeration (ESU) (18)
o Kavosh Algorithm (19)

e Subgraph Sampling (20)

o Orbit Counting Algorithm (Orca) (21)

We will take a closer look at ESU algorithm, which is a baseline
approach for subgraph counting. We will keep track of two
sets:

o Viup, which holds currenty construted subgraph (motif).

e Veszt, which holds a set of candidate nodes to extend the
subgraph.

The main idea is to start with a single node v, and next add
the nodes u to Veu¢ if two conditions hold:

1. ID of a node u has to be larger than that of v

2. u may only be neighbored to some newly added node w,
but not to any node already in Viup (we want to only
extend the subgraph that we have built so far).

ESU is a recursive algorithm and it builds an implicit tree-like
structure of maximal depth k (size of subgraph). We call this
structure the ESU-Tree. Pseudocode for the algorithm:

Algorithm 1 Exact Subgraph Enumeration (ESU)

Input graph G = (V, E), integer k (1 < k < |V])
Output All size-k subgraphs in G

1: ENUMERATESUBGRAPHS(G, k):

2: for each vertex v € V do

> extend Veg+ with all neighbouring nodes u, that have

a higher id than vertex v

: Vewt < {u € N({v}) : u > v}

5: EXTENDSUBGRAPH({v}, Vest, V))

6: return

1: EXTENDSUBGRAPH(Vsub, Vest, v):

2: if |V;ub| = k then

3: return G[Vius]

4: while V.z: # 0 do

5: Remove arbitrary chosen vertex w from Vgt

6: > extend Vez: with all vertices u from exclusive neigh-
bourhood, that have a higher id than vertex v

7 Viet < Vear U {u € Negar(w, Vswp) : u > v}

8 EXTENDSUBGRAPH (Vsup U w, Vg, v)

9: return

Nezet(w, Vsup) denotes the exclusive neighbourhood, e.g. all
nodes neighbouring w, but not in Vsus or N(Vius) (13).

As we can see, ESU is a simple algorithm, but it is also really
slow and computationally expensive. The fastest algorithm
out of those stated is Orca. We can see the comparison
between Orca and a few other algorithms in Figure 11. As we
can see from the results, when using larger graphlet sizes on
really big networks, Orca is the only algorithm, that finished
computation.

Network Four-node graphlets Five-node graphlets

FANMOD GraphCrunch RAGE Orca FANMOD GraphCrunch Orca
S.cerevisiae 625 44s 17s <0ls 87min 9.5min 665
s 185 1.0s <0ls 38 min 4.1 min a8s
21s s 1.6s <01s 18min 28min 23s
/ 183 min 11.8min 61s / / 269 min

et autonomous systems 574 min 37min 3.0min 25s / / 49 min

Note: We aborted the algorithms that took more than a day and marked the corresponding results with /.

Fig. 11. Comparison of algorithms on real-world networks. FANDOM algorithm
represents the ESU algorithm. Source: (21).

A. Practical example. We can use Python netsci library (22)
for finding motifs. Netsci can only find motifs with three node.
We will use Networkxz for reading the network. We used the
bottlenose dolphins network. Although this is an undirected
network, we will present it as directed, to differentiate between
more types of motifs.
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Fig. 10. All 2-node, 3-node, 4-node, and 5-node graphlets. They are numbered from 1 to 29. The small numbers beside nodes denote the automorphism orbits. Source: Przulj

etal. (3)

import networkx as nx
import netsci.metrics.motifs as nsm

graph = nx.read_adjlist(’dolphins.net’,
create_using=nx.DiGraph)
A = nx.adjacency_matrix (graph)

all_motifs nsm.motifs (A)
print (all_motifs)

#
#

(=1. =3,

238 ;

-1,
2,

455,
48, 0,

1398,
05 19

413,

0, 12, 0, 0l

The returned array represents the number of occurrences for
each type of motif. As we can see from the result first three
numbers in the array represent non-connected motifs. The
rest 13 numbers represent the number of occurrences for each
type.

To find out which array index belongs to which type of
motif we can again use netsci:

import mnetsci.visualization as nsv

nsv.bar_motifs(all_motifs)

This function prints out a graph, which can be seen in Figure
12.

Discussion

In this paper, we presented a popular approach of analyzing
networks — by using graphlets and motifs. For each of these
2 concepts, we provided the definitions and mathematical
background required for understanding the possible use of
graphlets and motifs in network analysis. We supported the
definitions with simple examples and/or visualizations in order
for this paper to serve as a concise overview of graphlets and
motifs and a learning tool for future generations. The issue
with using graphlets and motifs is that there is no appropriate
up-to-date library in a popular programming language (e.g.,
Python), which could be used for finding more complex and
larger graphlets and motifs.
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Fig. 12. Visualisation of motifs found using netsci library. We can see that for example
motif 2 is much more represented than all other motifs, while some motifs do not even
occur.
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