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centrality measures

which nodes are most important?

— node centrality measures for (un)directed networks
— clustering coefficients [WS98, SV05, dNMBO05]
— geodesic-based measures [Fre77, FBW91, New05]
— spectral analysis measures [Kat53, Bon87, BP98]
— fragment-based measures [MSOIT02, Prz07, EK15]
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— link analysis algorithms primarily for directed networks
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networkology LPP

— vpartial LPP public bus transport network*

— 11— 416 bus stops with (k) = 5.62 connections
— giant component 95.4% nodes (6 components)
— “small-world” with (C) — 0.09 and (d) — 14.26
— “scale-free” with + = 2.62 for cutoff k,;, =5

*
reduced to largest connected component
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centrality clustering

important nodes are strongly embedded

— for undirected G clustering coefficient C [WS98] of / is
— t; is number of linked neighbors or triangles of /|
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— w-corrected clustering coefficient C* [SVO05] of / is
— w; is maximum possible t; with respect to {k}
w __ & w o R
Ci o C7 =0 forw, =0
— p-corrected clustering coefficient C'* [Bat19] of / is
— i is maximum number of triangles over links
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networkology clustering

— clustering coefficient C in partial LPP network!
— highest C; = 1.0 nodes are Na Zalah etc. with k; — 2

SO

Treduced to simple undirected graph
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networkology u-clustering

— Ji-corrected clustering C'" in partial LPP network®
— highest C!" = 0.44 node is Drama with & — 10

1|reduced to simple undirected graph
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centrality closeness

important nodes are close to other nodes

— for (un)directed G closeness centrality /~* [New10] of / is

— dj is (un)directed distance between / and j
— d;j — oo for nodes in different components
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— (! spans small range in small-world networks
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networkology closeness

— closeness centrality /" in partial LPP network®
— highest 671 = 0.208 node is Gosposvetska with k; = 14

§

reduced to simple undirected graph
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centrality betweenness

important nodes are bridges between other nodes

— for (un)directed G betweenness centrality o [Fre77] of / is

— g. is number of shortest paths between s and t
— g., is number of such shortest paths through i
1 st

i =— ==

n= = 8st

— o considers only shortest paths [FBW91, New05]
— o mixes /ocal centers with global bridges [JMKT16]
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networkology betweenness

— betweenness centrality o in partial LPP network
— highest o; = 0.235 node is Razstavis¢e with k; = 11
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ﬂreduced to simple undirected graph
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centrality degrees

important nodes are linked by many nodes

— for undirected G degree centrality d of | is
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d’ — n-1 j#iA’J ~ n-—1

— in directed G in-degree centrality d"" of i is

in 1 k"
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— in directed G out-degree centrality d°'" of i is
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networkology degrees

— degree centrality d in partial LPP network
— highest d; = 0.099 node is Razstavis¢e with k; = 41
— highest d,-’” node is Razstavisce with k,-"” — 20 and k7" =21
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centrality eigenvector

important nodes are linked by important nodes

— for (un)directed G eigenvector centrality e [Bon87] of / is

— v and )\ are eigenvectors and eigenvalues of A
— e is proportional to leading eigenvector v,
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J

— in directed G e = 0 for k' = 0 nodes etc.
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networkology eigenvector

— eigenvector centrality e in partial LPP network
— highest e¢; — 0.082 node is Konzorcij with k; — 30
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centrality Katz

nodes get small amount of importance for free

— for (un)directed G Katz centrality z [Katb3] of / is
— « and [J; are some positive constants

zi=a) Ajzi+pBi
J

— for convenience [3; — 1 whereas o < )\1_1
— A1 is leading eigenvalue of A
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centrality PageRank

nodes distribute equal amount of importance

— for (un)directed G PageRank centrality p [BP98] of / is

— « and [J; are some positive constants

p’_azAUkout i

— for convenience [3; = %‘1 whereas o — 0.85

see PageRank algorithm NetLogo demo
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https://ccl.northwestern.edu/netlogo/

networkology PageRank

— PageRank centrality p in partial LPP network
— highest p; = 0.011 node is Razstavis¢e with k; = 41
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centrality overview

which nodes are most important?
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Edge Clustering Coefficient-based
[[ISpectral-based

(©David Schoch (University of Konstanz) [Miscellaneous
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