link bridging

introduction to network analysis (ina)

Lovro Šubelj University of Ljubljana spring 2024/25

bridging *measures*

which *links* are most *important*?

- link bridging measures for (un)directed networks
 - betweenness-based centrality [Fre77, FBW91, New05]
- link embeddedness measures for (un)directed networks
 - topological overlap measures [RSM⁺02, OSH⁺07, dNMB11]

networkology LPP

- partial LPP public bus transport network*
- n = 416 bus stops with $\langle k \rangle = 2.72$ connections
- giant component 95.4% nodes (6 components)
- "small-world" with $\langle C \rangle = 0.09$ and $\langle d \rangle = 14.26$
- "scale-free" with $\gamma = 2.43$ for cutoff $k_{min} = 2$

^{*}reduced to largest connected component of simple undirected graph

bridging betweenness

important *links* are between other nodes

- for (un)directed G link betweenness σ [Fre77] of $\{i, j\}$ is

 - g_{st} is number of geodesic paths between s and t g_{st}^{ij} is number of such geodesic paths through $\{i,j\}$

$$\sigma_{ij} = \sum_{st \notin \{i,j\}} \frac{g_{st}^{ij}}{g_{st}}$$

— σ considers only geodesic paths [FBW91, New05]

networkology betweenness

- link betweenness σ in partial LPP network[†]
- highest $\sigma_{ij} = 0.176n^2$ link is {Vič, Stan in dom}

reduced to largest connected component of simple undirected graph

bridging bridgeness

important links are bridges between nodes

- for (un)directed G link bridgeness $\tilde{\sigma}$ [JMK+16] of $\{i,j\}$ is
 - g_{st} is number of geodesic paths between s and t
 - g_{st}^{ij} is number of such geodesic paths through $\{i,j\}$

$$\widetilde{\sigma}_{ij} = \sigma_{ij} - \sum_{st \in \Gamma_i \cup \Gamma_j} \frac{g_{st}^{ij}}{g_{st}} = \sum_{st \notin \Gamma_i \cup \Gamma_j} \frac{g_{st}^{ij}}{g_{st}}$$

— σ mixes local centers with global bridges [JMK⁺16]

networkology bridgeness

- link bridgeness $\widetilde{\sigma}$ in partial LPP network[‡]
- highest $\widetilde{\sigma}_{ij} = 0.169 n^2$ link is {Vič, Stan in dom}

[‡]reduced to largest connected component of simple undirected graph

bridging embeddedness

important links are embedded between nodes

— for undirected G link embeddedness§ θ [OSH+07] of $\{i, j\}$ is – Γ_i is set of neighbors or neighborhood of i

$$heta_{ij} = rac{|\Gamma_i \cap \Gamma_j|}{k_i - 1 + k_j - 1 - |\Gamma_i \cap \Gamma_j|}$$
 $heta_{ij} = 0 ext{ for } k_i = k_j = 1$

- μ-corrected link embeddedness θ [Bat19] of $\{i,j\}$ is - μ is maximum number of triangles over links

$$\widetilde{\theta}_{ij} = \tfrac{|\varGamma_i \cap \varGamma_j|}{\mu + \max(k_i, k_j) - 1 - |\varGamma_i \cap \varGamma_j|}$$

 $[\]S_{\theta}$ & $\widetilde{\theta}$ better known as topological overlap indices/weights

networkology embeddedness

- *link embeddedness* θ in partial LPP network ¶
- highest $\theta_{ij} = 1.0$ links are {Zalog, Saturnus} etc.

 $[\]P$ reduced to largest connected component of simple undirected graph

networkology μ -embeddedness

- μ -corrected embeddedness $\widetilde{\theta}$ in partial LPP network
- highest $\theta_{ij} = 0.4$ links are {Pošta, Konzorcij} etc.

reduced to largest connected component of simple undirected graph

bridging overview

which *links* are most *important*?

bridging references

A.-L. Barabási.

Network Science.

Cambridge University Press, Cambridge, 2016.

Vladimir Batagelj.

Corrected overlap weight and clustering coefficient.

e-print arXiv:190604581v1, 2019.

Wouter de Nooy, Andrej Mrvar, and Vladimir Batagelj.

Exploratory Social Network Analysis with Pajek: Expanded and Revised Second Edition. Cambridge University Press, Cambridge, 2011.

David Easley and Jon Kleinberg.

Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge, 2010.

Ernesto Estrada and Philip A. Knight.

A First Course in Network Theory. Oxford University Press, 2015.

Linton C. Freeman, Stephen P. Borgatti, and Douglas R. White.

Centrality in valued graphs: A measure of betweenness based on network flow. Soc. Networks, 13(2):141–154, 1991.

I Freeman

A set of measures of centrality based on betweenness.

Sociometry, 40(1):35-41, 1977.

bridging references

Pablo Jensen, Matteo Morini, Marton Karsai, Tommaso Venturini, Alessandro Vespignani, Mathieu Jacomy, Jean-Philippe Cointet, Pierre Merckle, and Eric Fleury.

Detecting global bridges in networks.

J. Complex Netw., 4(3):319-329, 2016.

M. E. J. Newman.

A measure of betweenness centrality based on random walks. Soc. Networks, 27(1):39-54, 2005.

Mark E. J. Newman.

Networks.

Oxford University Press, Oxford, 2nd edition, 2018.

J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész, and A.-L. Barabási. Structure and tie strengths in mobile communication networks.

P. Natl. Acad. Sci. USA, 104(18):7332-7336, 2007.

E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and Albert László Barabási.

Hierarchical organization of modularity in metabolic networks.

Science, 297(5586):1551-1555, 2002.