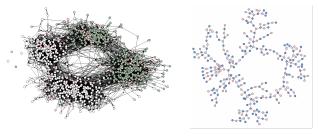
node *mixing*

introduction to network analysis (ina)

Lovro Šubelj University of Ljubljana spring 2024/25

mixing *definition*

- node mixing = correlations between linked nodes
- in assortative mixing nodes are linked to similar others
- in *disassortative mixing* nodes *linked to dissimilar* others



assortative mixing by age & race

disassortative mixing by gender

mixing degree

- special case of node mixing by degree [New02]
- majority of social networks degree assortative
- most other networks are degree disassortative

$$p_{kk'} = k \frac{k'}{2m-1} = m \frac{kk'}{\binom{2m}{2}} \approx \frac{kk'}{2m}$$

protein hubs avoid hubs but $p_{56,13} = \frac{56\cdot13}{2\cdot2277} = 0.16 \gg p_{1,2} = 0.0004$

celebrity hubs date hubs but $10^3/10^8 = 0.00001$

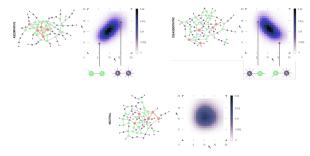
mixing matrix

— *endpoints degree distribution e_{kk'}* defined as

- $e_{kk'}$ is link probability between degree-k & -k' nodes
- r_k is neighbor non-excess degree distribution $\frac{kp_k}{\langle k \rangle}$

$$\sum_{kk'} e_{kk'} = 1 \qquad \sum_{k'} e_{kk'} = r_k = n_k \frac{k}{2m-1} \approx \frac{kp_k}{\langle k \rangle}$$

 $e_{kk'} = r_k r_{k'}$ in neutral networks but impractical for (dis)assortative networks

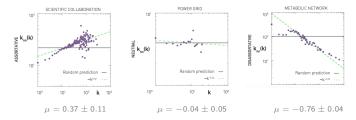


mixing exponent

— *neighbor degree function* k_{nn} [PSVV01] defined as

- $k_{nn}(k)$ is average neighbor degree of degree-k nodes - P(k'|k) is link probability of degree-k to -k' node - μ is degree mixing power-law exponent [VPSV02] $k_{nn}(k) = \sum_{k'} k' P(k'|k) = \sum_{k'} k' \frac{e_{kk'}}{\sum_{k'} e_{kk'}}$

 $k_{nn} = \frac{\langle k^2 \rangle}{\langle k \rangle}$ in neutral networks and $k_{nn}(k) \sim k^{\mu}$ in (dis)assortative networks



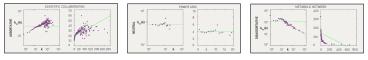
mixing coefficient

— *degree mixing coefficient r* [New02, Est11] defined as

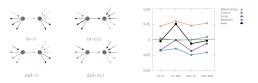
- r is Pearson correlation of linked nodes' excess degrees [New03]
- q_k is neighbor excess degree distribution $\frac{(k+1)p_{k+1}}{\langle k \rangle}$

$$r = \sum_{kk'} \frac{kk'(e_{kk'} - q_k q_{k'})}{\sum_k k^2 q_k - \left(\sum_k kq_k\right)^2}$$

r = 0 in neutral networks and $k_{nn}(k) \sim rk$ in (dis)assortative networks



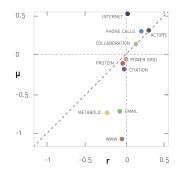
$$r = 0.13$$



mixing *networks*

- coefficient & exponent r & μ in real networks [Bar16] - r & μ correlate in assortative regime and sgn(r) = sgn(μ)

NETWORK	N	r	μ
Internet	192,244	0.02	0.56
WWW	325,729	-0.05	-1.11
Power Grid	4,941	0.003	0.0
Mobile Phone Calls	36,595	0.21	0.33
Email	57,194	-0.08	-0.74
Science Collaboration	23,133	0.13	0.16
Actor Network	702,388	0.31	0.34
Citation Network	449,673	-0.02	-0.18
E. Coli Metabolism	1,039	-0.25	-0.76
Protein Interactions	2,018	0.04	-0.1



mixing structural

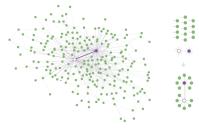
— structural disassortativity $\frac{E_{kk'}}{m_{kk'}} > 1$ [MSZ04] in real networks

- $E_{kk'}$ is expected number of links between degree-k & -k' nodes
- $m_{kk'}$ is maximum $E_{kk'}$ hence min $(kn_k, k'n_{k'}, n_kn_{k'})$

 $E_{kk'} = 2me_{kk'} = \langle k \rangle ne_{kk'}$

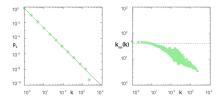
natural cutoff $k_{max} \sim n^{\frac{1}{\gamma-1}}$ and structural cutoff $k_s \sim \sqrt{\langle k \rangle n}$

— structural disassortativity in scale-free networks with $\gamma < 3$

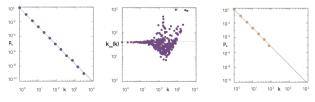


$$k=55$$
 and $k'=46$ then $E_{kk'}=\frac{55\cdot 46}{3\cdot 300}=2.81>1$

mixing *scale-free*



configuration scale-free network as simple graph



configuration scale-free network as multigraph

10²

k___(k)

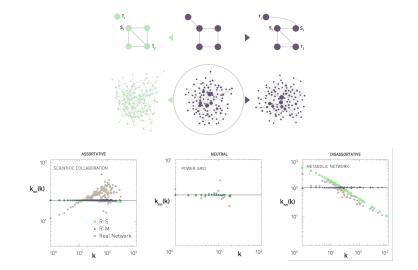
10

10° 101

10² k 10³

104

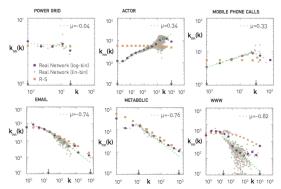
mixing randomization



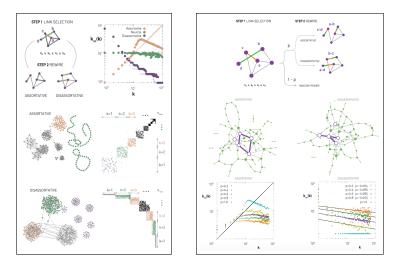
degree-preserving randomization with simple/multi links retains/destroys structural disassortativity

mixing networks

- neighbor degree k_{nn} in real networks [Bar16]
- collaboration assortative and technological neutral
- biological/information (structurally) disassortative



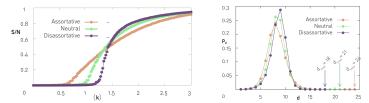
mixing *models*



(dis)assortative degree-preserving randomization [XBS05]

mixing *impact*

- *degree mixing* impacts *connectivity* and *distances* [New02]
- *assortative mixing* coexists with *community structure* [NP03]
- mixing influences resilience [VM03] and controllability [LSB11]



mixing references

A.-L. Barabási.

Network Science. Cambridge University Press, Cambridge, 2016.

Wouter de Nooy, Andrej Mrvar, and Vladimir Batagelj.

Exploratory Social Network Analysis with Pajek: Expanded and Revised Second Edition. Cambridge University Press, Cambridge, 2011.

David Easley and Jon Kleinberg.

Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge, 2010.

Ernesto Estrada and Philip A. Knight.

A First Course in Network Theory. Oxford University Press, 2015.

Ernesto Estrada.

Combinatorial study of degree assortativity in networks. *Phys. Rev. E*, 84(4):047101, 2011.

Yang-Yu Liu, Jean-Jacques Slotine, and Albert-Laszlo Barabasi. Controllability of complex networks. *Nature*. 473(7346):167–173, 2011.

Sergei Maslov, Kim Sneppen, and Alexei Zaliznyak.

Detection of topological patterns in complex networks: Correlation profile of the internet. *Physica A*, 333:529–540, 2004.

M. E. J. Newman.

Assortative mixing in networks. Phys. Rev. Lett., 89(20):208701, 2002.

mixing references

M. E. J. Newman.

Mixing patterns in networks. Phys. Rev. E, 67(2):026126, 2003.

Mark F. I. Newman

Networks. Oxford University Press, Oxford, 2nd edition, 2018.

M. E. J. Newman and Juyong Park.

Why social networks are different from other types of networks. *Phys. Rev. E*, 68(3):036122, 2003.

Romualdo Pastor-Satorras, Alexei Vázquez, and Alessandro Vespignani.

Dynamical and correlation properties of the Internet. *Phys. Rev. Lett.*, 87(25):258701, 2001.

Alexei Vázquez and Yamir Moreno.

Resilience to damage of graphs with degree correlations. *Phys. Rev. E*, 67(1):015101, 2003.

Alexei Vázquez, Romualdo Pastor-Satorras, and Alessandro Vespignani. Large-scale topological and dynamical properties of the Internet. *Phys. Rev. E.* 65(6):066130. 2002.

R. Xulvi-Brunet and I. M. Sokolov.

Changing correlations in networks: Assortativity and dissortativity. Acta Phys. Pol. B, 36:1431–1455, 2005.