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mixing definition

— node mixing = correlations between linked nodes

— in assortative mixing nodes are linked to similar others

— in disassortative mixing nodes linked to dissimilar others

assortative mixing by age/race disassortative mixing by gender
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mixing degree

— special case of node mixing by degree [New02]

— majority of social networks degree assortative

— most other networks are degree disassortative

pkk′ = k k′

2m−1
= m kk′

(2m
2 )

≈ kk′

2m

celebrity hubs date hubs protein hubs avoid hubs

but 103/108 = 0.00001 but p56,13 = 0.16� p1,2 = 0.0004
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mixing matrix

— endpoints degree distribution ekk ′ defined as

– ekk′ is link probability between degree-k & -k ′ nodes
– qk is neighbor non-excess degree distribution kpk

〈k〉∑
kk ′ ekk ′ = 1

∑
k ′ ekk ′ = qk = nk

k
2m−1 ≈

kpk
〈k〉

ekk′ = qk qk′ in neutral networks but impractical for (dis)assortative networks
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mixing exponent

— neighbor degree function knn [PSVV01] defined as

– knn(k) is average neighbor degree of degree-k nodes
– P(k ′|k) is link probability of degree-k to -k ′ node
– µ is degree mixing power-law exponent [VPSV02]

knn(k) =
∑

k ′ k
′P(k ′|k) =

∑
k ′ k
′ ekk′∑

k′ ekk′

knn = 〈k2 〉
〈k〉 in neutral networks and knn(k) ∼ kµ in (dis)assortative networks

µ = 0.37± 0.11 µ = −0.04± 0.05 µ = −0.76± 0.04
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mixing coefficient

— degree mixing coefficient r [New02, Est11] defined as

– r is Pearson correlation of linked nodes’ degrees [New03]

– qk is neighbor excess degree distribution (k+1)pk+1

〈k〉

r =
∑

kk ′
kk ′(ekk′−qk qk′ )∑
k k2 qk−(

∑
k kqk)

2

r = 0 in neutral networks and knn(k) ∼ rk in (dis)assortative networks

r = 0.13 r = 0 r = −0.04
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mixing networks

— coefficient & exponent r & µ in real networks [Bar16]

— r & µ correlate in assortative regime and sgn(r) = sgn(µ)
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mixing structural

— structural disassortativity
Ekk′
mkk′

> 1 [MSZ04] in real networks

– Ekk′ is number of links between degree-k & -k ′ nodes
– mkk′ is maximum Ekk′ hence min(knk , k

′nk′ , nknk′)

Ekk ′ = 2mekk ′ = 〈k〉nekk ′

natural cutoff kmax ∼ n
1

γ−1 and structural cutoff ks ∼
√
〈k〉n

— structural disassortativity in scale-free networks with γ < 3

k = 55 and k′ = 46 then Ekk′ = 2.81 > 1
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mixing scale-free

configuration scale-free network as simple graph

configuration scale-free network as multigraph configuration scale-free network without hubs k ≥ ks

8/12 © Lovro Šubelj



mixing randomization

degree-preserving randomization with simple/multi links retains/destroys structural disassortativity
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mixing networks

— neighbor degree knn in real networks [Bar16]

— collaboration assortative and technological neutral

— biological/information (structurally) disassortative
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mixing models

(dis)assortative degree-preserving randomization [XBS05]
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mixing impact

— degree mixing impacts connectivity and distances [New02]

— assortative mixing coexists with community structure [NP03]

— mixing influences resilience [VM03] and controllability [LSB11]
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