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mixing definition

— node mixing = correlations nodes
— in assortative mixing nodes are similar others
— in disassortative mixing nodes dissimilar others
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assortative mixing by age/race disassortative mixing by gender
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mixing degree

— special case of node mixing by degree [New02]
— majority of social networks degree assortative
— most other networks are degree disassortative
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celebrity hubs date hubs protein hubs avoid hubs
but 103 /10% = 0.00001 but psg.13 = 0.16 >> p; o = 0.0004
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mixing matrix

— endpoints degree distribution e, defined as

— ey is link probability between degree-k & -k’ nodes

— qy is neighbor non-excess degree distribution %

kK k
Dok ek =1 Dk €k = Qi = N7 <

e’ = qrqys in neutral networks but impractical for (dis)assortative networks
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mixing exponent

— neighbor degree function k,, [PSVV01] defined as

— ku,(k) is average neighbor degree of degree-k nodes
P(k’|k) is link probability of degree-k to -k’ node
— 1 is degree mixing power-law exponent [VPSV02]

i / / / ekk’
knn(k) — Zk/ k P(k ‘k) Zk’ k Zk’ e’

2
Knn = % in neutral networks and knn(k) ~ k* in (dis)assortative networks
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mixing coefficient

— degree mixing coefficient r [New02, Est11] defined as
— ris Pearson correlation of linked nodes’ degrees [New03]

— qk is neighbor excess degree distribution
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mixing networks

— coefficient & exponent r & (1 in real networks [Barl6]

— r & |1 correlate in assortative
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mixing structural

— structural d/sassortatlwty > 1 [MSZ04] in real networks

— Eyr is number of links between degree-k & -k’ nodes
— My is maximum E hence min(kny, kK'ngr neng )

Ekk’ = 2mekk/ = (k>nekk/
1
natural cutoff kya. ~ nv=1 and structural cutoff ks ~ \/(k)n

— structural disassortativity in scale-free networks with 4 < 3

e
oy o0

k =55 and k’ = 46 then E,,, =2.81 > 1
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mixing scale-free
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configuration scale-free network as multigraph
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configuration scale-free network without hubs k > ks



mixing randomization
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degree-preserving randomization with simple/multi links retains/destroys structural disassortativity
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mixing networks

— neighbor degree k,, in real networks [Barl6]
— collaboration assortative and technological neutral

— biological /information (structurally) disassortative
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mixing models
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(dis)assortative degree-preserving randomization [XBS05)
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mixing impact

— degree mixing impacts connectivity and distances [New02]
— assortative mixing coexists with community structure [NPO3]

— mixing influences resilience [VMO3] and controllability [LSB11]
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