subgraphs or *fragments*

introduction to network analysis (ina)

Lovro Šubelj University of Ljubljana spring 2024/25

fragments *definition*

- small subgraphs are building blocks of networks
- subgraphs characterize local network structure

- *fragments* = *connected subgraphs* of networks [EK15]
- motifs = frequent non-induced subgraphs [MSOI+02]
- graphlets = specific induced subgraphs [PCJ04]

see mfinder and orca for implementations

network motifs

introduction to network analysis (ina)

Lovro Šubelj University of Ljubljana spring 2024/25

motifs definition

- fragments characterize network-wise local structure
- motifs are frequent non-induced fragments [MSOI⁺02] probability of motif appearing in random graph equal or greater number of times is < 0.01</p>
- (un)directed motifs consisting of three to five/six/seven nodes

all 13 directed three-node motifs

motifs significance

— motif significance Z with normal distribution N(0, 1)

- \tilde{n}_i is number of motifs *i* in random graph with variance $\tilde{\sigma}_i^2$
- n_i is number of motifs i in real network

$$Z_i = rac{n_i - \langle \widetilde{n}_i
angle}{\widetilde{\sigma}_i}$$
 $n_i - \langle \widetilde{n}_i
angle > 0.1 \langle \widetilde{n}_i
angle$

— $\tilde{n}/\tilde{\sigma}$ estimated by motif preserving randomization [MSOI+02]

Network	Nodes	Edges	Nreal	Nrand ± SD	Z score	Nreal	$N_{\text{rand}} \pm \text{SD}$	Z score	Nreal	Nrand ± SE	Z score
Neurons				X Ψ Y Ψ	Feed- forward loop	x z	≺¥ ₩	Bi-fan	¥, ¥,	×N ⊮Z	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				X ∀ Y ¥ Z	Three chain	¥' ¥	° № Z	Bi- parallel			
Little Rock	92	984	3219	3120 ± 50	2.1	7295	2220 ± 210	25			
Ythan	83	391	1182	1020 ± 20	7.2	1357	230 ± 50	23			
St. Martin	42	205	469	450 ± 10	NS	382	130 ± 20	12			
Electronic circuits (forward logic chips)				X ∀ Y ∀ Z	Feed- forward loop	x z	₩ ₩	Bi-fan	Y Y	^z ^z	Bi- parallel
s15850	10,383	14,240	424	2 ± 2	285	1040	1 ± 1	1200	480	2 ± 1	335
s38584	20,717	34,204	413	10 ± 3	120	1739	6 ± 2	800	711	9 ± 2	320
s38417	23,843	33,661	612	3 ± 2	400	2404	1±1	2550	531	2 ± 2	340
World Wide Web				x Y Z	Feedback with two mutual dyads	$x \xrightarrow{x} z$		Fully connected triad	$ \begin{array}{c} \swarrow^X \\ Y \iff Z \end{array} $		Uplinked mutual dyad
nd.edu§	325,729	1.46e6	1.1e5	$2e3 \pm 1e2$	800	6.8e6	5c4±4c2	15,000	1.2e6	1c4 ± 2c	2 5000

motifs examples

motif Z-scores of class software networks [VS05]

C								-				1			1		
Network	Nodes	Edges	Num	Nnet	Zmm	Nmi	Nmot	Zaura	N _{red}	Name	Zneen	Nred	Nmet	Zawa	Noni	Nmat	Z
Software Networks (medium)			G	FFL SJ8	۲	\$ ^в	parallel S904	<	o FFLo	stended S344							
Fairuse	106	182	41	11.6+3.3	8.94	18	7.3+3.5	3.01	33	9.545.5	4.25						
Aime	143	319		n/a		230	30.8±19	10.46	55	31.8+9.3	2.49						
Filerilla22	la 186	331	77	29.4±6.1	7.86	30	10.2±4.5	4.38		n/a							
Aztec	255	391	68	2615.4	7.82	25	10.6±4.6	3.15	68	14±5.9	9.08						
Exelt	261	504	107	56,3+8.4	6.01	86	30.2+8	6.75	182	\$0.2±19.	6 5.18						
Software No (large)	Software Networks (large)			M	Bi-fan S204	Bi-parallet \$904		Multi-X S2252			S206			52190			
blender220	495	834	486	138+30.3	11.4	33	16+5.2	3.2	123	7.8±5.8	20	22	3.743.6	5.04	18	4.2±3.2	4.37
gtk221	748	1147	644	189±33.8	13.4	119	25±7.5	12.5	173	26416.7	8.8	21	2.041.7	10.9	19	4.2±2.7	5,41
vtk	771	1362	512	262±39.9	6.27	295	69±14.3	15.8	41	6.3±3.2	10.7	193	27.7±14.	7 11.2	122	12.8+5.	8 18.7
java2	1364	1947	816	189±35.5	17,7	173	48±10.8	11.5	345	18.4±14	23.3	22	2.2+2.1	9.5	17	3.8+2.2	5.99
prorally	1993	4987	2275	01840±171	122	3848	322+34.2	103.1	1080	144±50.	6 18.4	210	28.7±9.2	19.8	1318	55.5+14	7 85.9
Software Networks (large)			G	FFL S38	S472		Multi-X incomp. S2186			Multi-X incomp S408			FFL extended				
blender226	5		126	33.8±6.1	15		N/A		1976	766±162	7.43	436	196±65	3.7	94	26.248	6 7.88
gtk221			118	47.7+9.6	7.31	15	3.1+2.3	5.06	4177	1941±39	8 5.6	1462	748±261	2.73	188	68.1±13	.7 8.73
vik			229	81.6+10.6	13.9	30	1346.7	2.53	707	388±61.6	5.17	333	217±44	2.62	718	212.1±4	9.1 10.3
java2			176	45.2+9	14.4	8	1.8=1.4	4.57	10212	6346±11	80 3.2	2494	1397±52	2 2.1	257	\$2.5±11	.6 11.6
procally			1169	272±21	42.6	282	30.8±10.4	24.2	25099	15482±1	7505.5	5742	4163±75	2 2.1	2909	736±10	1.4 21.4

motif Z-scores of spatio-temporal crime networks [DM15]

motifs profiles

- $\begin{array}{l} \quad motif \ significance \ profile \ SP \ [MSOI+02] \ defined \ as \\ \ Z_i \ is \ significance \ of \ motif \ i \ in \ real \ network \\ SP_i = \frac{Z_i}{\sqrt{\sum_i Z_i^2}} \qquad Z_i = \frac{n_i \langle \widetilde{n}_i \rangle}{\widetilde{\sigma}_i} \qquad n_i \ge 4 \end{array}$
- motif abundance/ratio profile RP [MIK+04] defined as
 - A_i is abundance of motif i in real network

$$RP_i = \frac{A_i}{\sqrt{\sum_i A_i^2}}$$
 $A_i = \frac{n_i - \langle \tilde{n}_i \rangle}{n_i + \langle \tilde{n}_i \rangle + \epsilon_i}$ $\epsilon_i = 4$

motifs *families*

- directed *motif significance profiles* [MSOI⁺02]
- profiles reveal (super)families of real networks

all 13 directed three-node motifs

network graphlets

introduction to network analysis (ina)

Lovro Šubelj University of Ljubljana spring 2024/25

graphlets definition

- fragments characterize node-wise local structure
- graphlets are specific induced fragments [PCJ04]
- graphlet orbits are automorphisms of graphlets [Prž07]
- (un)directed graphlets consisting of three to five/... nodes

all 30 undirected two- to five-node graphlets with 73 orbits

graphlets *frequency*

— relative graphlet frequency F [PCJ04] defined as

- n_i is number of graphlets i in real network

graphlet frequency in protein network and random graphs

graphlets distribution

— *i-th orbit graphlet degree distribution* p_k^i [Prž07] defined as

 $- p_k^0$ is degree distribution p_k of real network

 $\widetilde{p}_{k}^{i} \sim p_{k}^{i}/k$

- p_k^i is graphlet degree distribution for *i*-th orbit
- \widetilde{p}_k^i is scaled graphlet degree distribution for *i*-th orbit

11th and 16th orbit graphlet degree distributions of protein network and random graph

 $\widetilde{p}_{k}^{0} = p_{k}^{0} = p_{k}$

graphlets agreement

- *i-th orbit graphlet agreement A_i* [Prž07] defined as
 - \widetilde{p}_k^i is *i*-th orbit graphlet degree distribution of first network
 - \widetilde{q}_k^i is *i*-th orbit graphlet degree distribution of second network

$$A_i = 1 - \sqrt{\frac{1}{2}\sum_k \left(\log \widetilde{q}_k^i - \log \widetilde{p}_k^i\right)^2}$$

— arithmetic/geometric graphlet agreement A defined as

$$A = \frac{1}{73} \sum_{i} A_{i} \qquad A = \left(\prod_{i} A_{i}\right)^{\frac{1}{73}}$$

arithmetic/geometric graphlet agreement of protein networks and random graphs

graphlets *measures*

graphlet correlation matrix and distance [YMDD⁺14]

fragments references

A.-L. Barabási.

Network Science. Cambridge University Press, Cambridge, 2016.

Toby Davies and Elio Marchione.

Event networks and the identification of crime pattern motifs. PLoS ONE, 10(11):e0143638, 2015.

Wouter de Nooy, Andrej Mrvar, and Vladimir Batagelj. Exploratory Social Network Analysis with Pajek: Expanded and Revised Second Edition. Cambridge University Press, Cambridge, 2011.

David Easley and Jon Kleinberg.

Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge, 2010.

Ernesto Estrada and Philip A. Knight.

A First Course in Network Theory. Oxford University Press, 2015.

Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal Ayzenshtat, Michal Sheffer, and Uri Alon. Superfamilies of evolved and designed networks. *Science*, 303(5663):1538–1542, 2004.

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.

Network motifs: Simple building blocks of complex networks. Science, 298(5594):824–827, 2002.

fragments references

Mark E. J. Newman.

Networks. Oxford University Press, Oxford, 2nd edition, 2018.

N. Pržulj, D. G. Corneil, and I. Jurisica.

Modeling interactome: Scale-free or geometric? *Bioinformatics*, 20(18):3508–3515, 2004.

Nataša Pržulj.

Biological network comparison using graphlet degree distribution. *Bioinformatics*, 23(2):e177–e183, 2007.

Sergi Valverde and Ricard V. Solé.

Network motifs in computational graphs: A case study in software architecture. *Phys. Rev. E*, 72(2):026107, 2005.

Ömer Nebil Yaveroğlu, Noël Malod-Dognin, Darren Davis, Zoran Levnajić, Vuk Janjic, Rasa Karapandza, Aleksandar Stojmirovic, and Nataša Pržulj. Revealing the hidden language of complex networks. *Sc. Rep.*, 4:4547, 2014.