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history graph theory

1736 seven bridges of Königsberg [Eul36] (Leonhard Euler)

1800s travelling salesman problem (William Hamilton)

1845 electrical circuit laws (Gustav Kirchhoff)

1857 chemical structure theory (August Kekulé)
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history operations research

1956 shortest paths (Edsger Dijkstra)

1956 minimum spanning tree (Joseph Kruskal)

1956 maximum flow/minimum cut (Ford & Fulkerson)

1956 signed graph theory [CH56] (Cartwright & Harary)

1959 random graph theory [ER59] (Erdős & Rényi)
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history sociometry

1934 children sociograms [Mor34] (Jacob Moreno)

1941 Southern women [DGG41] (Allison Davis)

1970 university karate club [Zac77] (Wayne Zachary)

 
Figure 5.  Illustration of the new label updating scheme.  

 
 

 
Figure 6.  The initial division (a) and the final community division (b) 
obtained by LP&BRIM in southern women network. Event nodes are 
represented as open symbols with black labels and woman nodes as filled 
symbols with white labels. The nodes in the two communities are indicated 
as circle and rectangle shapes of symbols, respectively. 

 

TABLE I.  THE RESULTS OF ADAPTIVE BRIM AND LP&BRIM IN THE 
AUTHOR-PAPER NETWORK OF ARXIV DATABASE (RUNNING ON A PC WITH 
INTEL CORE 2 DUAL PENTIUM CPU @ 1.83G). 

Algorithm adaptive BRIM LP&BRIM 

Number of communities 128 2176 

Average community size 312.39 18.38 

Bipartite modularity 0.731653 0.783622 

Running time(sec.) 189.032 95.140 
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Figure 7.  Bipartite modularity of the corresponding division generated by 
RandomAssignment&BRIM in the author-paper network of arXiv database. 

V. EXPERIMENTS 

A. Southern Women Network 
As the first experiment, we consider southern women 

network [9] to verify the accuracy of LP&BRIM. This is 
because the network has been broadly analyzed by social 
network researchers and its community structure is known. 
There are 18 women nodes and 14 events nodes, with 89 
edges linking to woman nodes and event nodes if the women 
attended the corresponding events. 

The process of applying LP&BRIM to this network is as 
follows: first, LP probes an initial division, which contains 
two communities: {woman 1-6, event 1-6} and {woman 7-
18, event 7-14}(Fig. 6a); then BRIM refines the initial 
division and obtains another two communities: {woman 1-7, 
9, event 1-7} and {woman 8, 10-18, event 8-14} (Fig. 6b), 
with bipartite modularity increasing from 0.299710 to 
0.321172. Davis, who collected the network data, has ever 
used ethnographic knowledge to divide women into 
communities {1-9} and {9-17} (woman 9 is a secondary 
member of both communities) [9]. Note that, if we only look 
at woman nodes, the final community division by LP&BRIM 
agrees with the one proposed by Davis, except for woman 8. 
Thus LP&BRIM is able to identify true community structure 
in this network. 

(a) 

(b) 

B. Author-paper Network of ArXiv Database 
Now we test the performance of LP&BRIM against 

adaptive BRIM in large-scale networks. First, we apply these 
two algorithms to an author-paper network [11], which 
contains 8638 author nodes and 31348 physics paper (arxiv 
hep-th) nodes, and 64154 edges which represent the 
authorship relations between author nodes and paper nodes. 
Table I shows the results of the experiment. 

Bipartite modularity of the division found by LP&BRIM 
is about 0.05 larger than that by adaptive BRIM. For 
LP&BRIM, LP part found an initial division with bipartite 
modularity being as large as 0.783405. The initial division is 
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FIG. 3: The fraction of vertices correctly classified by our
method as the number zout of inter-community edges per ver-
tex is varied, for computer generated graphs of the type de-
scribed in the text. The measurements with half-integer val-
ues zout = k + 1

2
are for graphs in which half the vertices

had k inter-community connections and half had k + 1. Each
point is an average over 100 realization of the graphs. Lines
between points are included solely as a guide to the eye.

B. Zachary’s karate club study

While computer-generated networks provide a repro-
ducible and well-controlled test-bed for our community-
structure algorithm, it is clearly desirable to test the al-
gorithm on data from real-world networks as well. To
this end, we have selected two datasets representing real-
world networks for which the community structure is
already known from other sources. The first of these
is drawn from the well-known “karate club” study of
Zachary [25]. In this study, Zachary observed 34 mem-
bers of a karate club over a period of two years. Dur-
ing the course of the study, a disagreement developed
between the administrator of the club and the club’s
instructor, which ultimately resulted in the instructor’s
leaving and starting a new club, taking about a half of
the original club’s members with him.

Zachary constructed a network of friendships between
members of the club, using a variety of measures to es-
timate the strength of ties between individuals. Here
we use a simple unweighted version of his network and
apply our algorithm to it in an attempt to identify the
factions involved in the split of club. Figure 4a shows
the network, with the instructor and the administrator
represented by nodes 1 and 34, respectively. Figure 4b
shows the hierarchical tree of communities produced by
our method. The most fundamental split in the network
is the first one at the top of the tree, which divides the
network into two groups of roughly equal size. This split
corresponds almost perfectly with the actual division of
the club members following the break-up, as revealed by
which club they attended afterwards. Only one node,
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FIG. 4: (a) The friendship network from Zachary’s karate club
study [25], as described in the text. Nodes associated with the
club administrator’s faction are drawn as circles, while those
associated with the instructor’s faction are drawn as squares.
(b) The hierarchical tree showing the complete community
structure for the network. The initial split of the network into
two groups is in agreement with the actual factions observed
by Zachary, with the exception that node 3 is misclassified.

node 3, is classified incorrectly. In other words, the ap-
plication of our algorithm to the empirically observed
network of friendships is a good predictor of the subse-
quent social evolution of the group.

C. College football

As a further test of our algorithm, we turn to the world
of US college football. (“Football” here means Amer-
ican football, not soccer.) The network we look at is
a representation of the schedule of Division I games for
the 2000 season: vertices in the graph represent teams
(identified by their college names) and edges represent
regular season games between the two teams they con-
nect. What makes this network interesting is that it in-
corporates a known community structure. The teams
are divided into “conferences” containing around 8 to 12
teams each. Games are more frequent between members
of the same conference than between members of differ-
ent conferences, with teams playing an average of about
7 intra-conference games and 4 inter-conference games

1967 small-world experiment [Mil67] (Stanley Milgram)

1973 strength of weak ties [Gra73] (Mark Granovetter)

1977 measures of centrality [Fre77] (Linton Freeman)
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history bibliometrics

1965 scientific paper citations [Pri65] (Derek de Solla Price)

1980s political scandals [HL03] (Mark Lombardi)

1986 neural wirings [WSTB86] (White et al.)

1999 transportation [Pel99] (Jon Pelletier)
 on January 18, 2013rstb.royalsocietypublishing.orgDownloaded from 
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revolution data

< 2000 small graphs 102-103 nodes

≈ 2000 communication networks 105-108 nodes

≈ 2005 online social networks 108 nodes

today Facebook graph > 109 users

today Web graph > 1012 pages
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revolution models

1959 random graph models [ER59]

1973 valued graphs models [Gra73]

1998 small-world network structure [WS98]

1999 scale-free network structure [BA99]
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revolution language

“A key discovery of network science is that the architecture of networks

emerging in various domains of science, nature, and technology are similar to

each other, a consequence of being governed by the same organizing principles.

Consequently we can use a common set of tools to explore these systems.”

Albert-László Barabási

“Networks are ideal structures to describe problems of organized complexity.”

César A. Hidalgo

“I think the 21st century will be the century of complexity.”

Stephen Hawking

7/10 © Lovro Šubelj



network impact

— management: internal structure of organization

— economic: from web search to social networking

— epidemics: from forecasting to halting deadly viruses

— health: from drug design to metabolic engineering

— security: fraud detection and fighting terrorism

— neuroscience: mapping human brain

— many other: . . .
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network science

problem
understanding real networks

means
study of network properties

design of mathematical models
implementation of efficient algorithms

goals
network structure and evolution

nodes, links, fragments, clusters, layers, networks

network dynamics and processes
spreading, diffusion, epidemics
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network analysis

data mining text mining computer vision

network analysis
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