## network visualization

introduction to network analysis (ina)

Lovro Šubelj University of Ljubljana spring 2024/25

#### visualization overview

#### network visualization with wiring diagram\*

1st compute *network layout* as *coordinates* in Euclidean plane etc.
2nd *representation* of *network links*? strength, pattern, shape, color etc.
3rd *representation* of *network nodes*? size, shape, color, label etc.



similar link lengths, no crossings, displays symmetry, even node distribution etc.

<sup>\*</sup>small/dense graphs better visualized with block models

### visualization Eades

- Eades spring embedded layout [Ead84]
- move nodes thus to *minimize layout energy*
- repulsive force between nodes i and j is  $\propto -c_1/l_{ij}^2$
- attractive force between neighbors i and j is  $\propto \log l_{ij}/c_2$ 
  - I<sub>ij</sub> is Euclidean distance between nodes i and j
  - $c_1$  and  $c_2$  are some appropriate constants



aesthetically pleasing with similar link lengths & symmetry

## visualization Fruchterman-Reingold

- Fruchterman-Reingold force-directed layout [FR91]
- move nodes thus to *minimize layout energy* as before
- repulsive force between nodes i and j is  $\propto -c^2/I_{ij}$
- attractive force between neighbors i and j is  $\propto l_{ii}^2/c$ 
  - I<sub>ij</sub> is Euclidean distance between nodes i and j
  - c is appropriate constant set to  $\propto \sqrt{area/n}$



pleasing with similar link lengths, symmetry & even distribution

## visualization Kamada-Kawai

- Kamada-Kawai graph theoretic layout [KK89]
- move nodes thus to minimize layout energy  $l_{ij} \propto d_{ij}$
- attractive/repulsive force between nodes i and j is  $\propto 1/d_{ij}^2$ 
  - l<sub>ij</sub> is layout Euclidean distance between nodes i and j
  - $d_{ij}$  is graph geodesic distance between nodes i and j



desired layout distance between nodes is their graph distance

## visualization karate





Fruchterman-Reingold layout [FR91]



circular layout



Kamada-Kawai layout [KK89]



spring embedding layout [Ead84]



LGL layout [ADWM04]

# visualization dolphins





Fruchterman-Reingold layout [FR91]



circular layout



Kamada-Kawai layout [KK89]



spring embedding layout [Ead84]



LGL layout [ADWM04]

## visualization football



random layout



circular layout



spring embedding layout [Ead84]



Fruchterman-Reingold layout [FR91]



Kamada-Kawai layout [KK89]



LGL layout [ADWM04]

## visualization women





Fruchterman-Reingold layout [FR91]



circular layout



Kamada-Kawai layout [KK89]



spring embedding layout [Ead84]



LGL layout [ADWM04]

## visualization static



(a) traditional (b) algebraic (c) hierarchical and (d) clustering-based force-directed layouts of web graph



(a,b) multilevel and (c,d) clustering-based force-directed layouts of autonomous systems by continent

## visualization dynamic



(a) incremental and (b) global clustering-based force-directed layouts of Internet by continent

## visualization *heterogeneous*



terrorist network (a) force-directed layout with semantic ontology and (b) active organizations (c) attack behaviour

#### visualization references



Alex T. Adai, Shailesh V. Date, Shannon Wieland, and Edward M. Marcotte.

LGL: Creating a map of protein function with an algorithm for visualizing very large biological networks. J. Mol. Biol., 340(1):179–190, 2004.



A.-L. Barabási.

Network Science

Cambridge University Press, Cambridge, 2016.



Wouter de Nooy, Andrej Mrvar, and Vladimir Batagelj.

Exploratory Social Network Analysis with Pajek: Expanded and Revised Second Edition. Cambridge University Press, Cambridge, 2011.



Peter Fades

A heuristic for graph drawing.

Congressus Numerantium, 42:149-160, 1984.



David Easley and Jon Kleinberg.

Networks, Crowds, and Markets: Reasoning About a Highly Connected World.

Cambridge University Press, Cambridge, 2010.



Ernesto Estrada and Philip A. Knight.

A First Course in Network Theory.
Oxford University Press, 2015.



Thomas M. J. Fruchterman and Edward M. Reingold.

Graph drawing by force-directed placement. Softw: Pract. Exper., 21(11):1129–1164, 1991.



Helen Gibson, Joe Faith, and Paul Vickers.

A survey of two-dimensional graph layout techniques for information visualisation.

Infor. Visual., 12(3-4):324-357, 2013.

### visualization references



Tomihisa Kamada and Satoru Kawai.

An algorithm for drawing general undirected graphs. *Inform. Process. Lett.*, 31(1):7–15, 1989.



Stephen G. Kobourov.

Force-directed drawing algorithms.

In Roberto Tamassia, editor, Handbook of Graph Drawing and Visualization, pages 383–408. CRC Press, 2013.



Kwan-Liu Ma and Chris W. Muelder.

Large-scale graph visualization and analytics. *Computer*, 46(7):39–46, 2013.



Mark E. J. Newman.

Networks.

Oxford University Press, Oxford, 2nd edition, 2018.