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learning tasks

modern machine learning with network data

— node-level tasks

– node classification (e.g. finding hoaxes on Wikipedia)

– node ranking (e.g. finding top influencers on Instagram)

– network clustering (e.g. research areas of scientific papers)

— edge-level tasks

– link prediction (e.g. product recommendation on Amazon)

– strength of ties (e.g. close friends/acquaintances on Facebook)

— graph-level tasks

– graph classification (e.g. playing strategy in football)

– graph generation (e.g. good candidates for new drugs)

– etc.
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learning since ∼2000

use network analysis techniques directly

— node ranking tasks

node centrality, link analysis, graphlets, egonets etc.

— link prediction tasks

link bridging, prediction indices, matrix factorization etc.

— network clustering tasks

community detection, (stochastic) blockmodeling etc.

— etc.
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learning until ∼2010

use network analysis techniques for features

1. generate node/link/graph features from network structure

2. feed generated features into machine learning method

but features are task dependent & redesigned every time!

for survey see [ZPS+16]
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learning modern

use machine learning methods for embeddings/directly

1. dimensionality reduction/matrix factorization (e.g. NMF)

decomposition of adjacency matrix A or graph Laplacian L

2. random walks on network (e.g. node2vec [GL16], struct2vec [FRS17])

similar nodes have similar embeddings independently of task

3. graph neural networks (e.g. GCN [KW17], GAT, GraphSAGE [HYL17])

node/edge/graph representations are learned for specific task

for survey see [MKNŠ21]

4/6 © Lovro Šubelj



learning node2vec

for paper see [GL16]
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learning GraphSAGE
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Figure 1: Visual illustration of the GraphSAGE sample and aggregate approach.

recognize structural properties of a node’s neighborhood that reveal both the node’s local role in the
graph, as well as its global position.

Most existing approaches to generating node embeddings are inherently transductive. The majority
of these approaches directly optimize the embeddings for each node using matrix-factorization-based
objectives, and do not naturally generalize to unseen data, since they make predictions on nodes in a
single, fixed graph [5, 11, 23, 28, 35, 36, 37, 39]. These approaches can be modified to operate in an
inductive setting (e.g., [28]), but these modifications tend to be computationally expensive, requiring
additional rounds of gradient descent before new predictions can be made. There are also recent
approaches to learning over graph structures using convolution operators that offer promise as an
embedding methodology [17]. So far, graph convolutional networks (GCNs) have only been applied
in the transductive setting with fixed graphs [17, 18]. In this work we both extend GCNs to the task
of inductive unsupervised learning and propose a framework that generalizes the GCN approach to
use trainable aggregation functions (beyond simple convolutions).

Present work. We propose a general framework, called GraphSAGE (SAmple and aggreGatE), for
inductive node embedding. Unlike embedding approaches that are based on matrix factorization,
we leverage node features (e.g., text attributes, node profile information, node degrees) in order to
learn an embedding function that generalizes to unseen nodes. By incorporating node features in the
learning algorithm, we simultaneously learn the topological structure of each node’s neighborhood
as well as the distribution of node features in the neighborhood. While we focus on feature-rich
graphs (e.g., citation data with text attributes, biological data with functional/molecular markers), our
approach can also make use of structural features that are present in all graphs (e.g., node degrees).
Thus, our algorithm can also be applied to graphs without node features.

Instead of training a distinct embedding vector for each node, we train a set of aggregator functions
that learn to aggregate feature information from a node’s local neighborhood (Figure 1). Each
aggregator function aggregates information from a different number of hops, or search depth, away
from a given node. At test, or inference time, we use our trained system to generate embeddings for
entirely unseen nodes by applying the learned aggregation functions. Following previous work on
generating node embeddings, we design an unsupervised loss function that allows GraphSAGE to be
trained without task-specific supervision. We also show that GraphSAGE can be trained in a fully
supervised manner.

We evaluate our algorithm on three node-classification benchmarks, which test GraphSAGE’s ability
to generate useful embeddings on unseen data. We use two evolving document graphs based on
citation data and Reddit post data (predicting paper and post categories, respectively), and a multi-
graph generalization experiment based on a dataset of protein-protein interactions (predicting protein
functions). Using these benchmarks, we show that our approach is able to effectively generate
representations for unseen nodes and outperform relevant baselines by a significant margin: across
domains, our supervised approach improves classification F1-scores by an average of 51% compared
to using node features alone and GraphSAGE consistently outperforms a strong, transductive baseline
[28], despite this baseline taking ⇠100⇥ longer to run on unseen nodes. We also show that the new
aggregator architectures we propose provide significant gains (7.4% on average) compared to an
aggregator inspired by graph convolutional networks [17]. Lastly, we probe the expressive capability
of our approach and show, through theoretical analysis, that GraphSAGE is capable of learning
structural information about a node’s role in a graph, despite the fact that it is inherently based on
features (Section 5).

2

for paper see [HYL17]

6/6 © Lovro Šubelj



learning references

A.-L. Barabási.

Network Science.
Cambridge University Press, Cambridge, 2016.

Wouter de Nooy, Andrej Mrvar, and Vladimir Batagelj.

Exploratory Social Network Analysis with Pajek: Expanded and Revised Second Edition.
Cambridge University Press, Cambridge, 2011.

David Easley and Jon Kleinberg.

Networks, Crowds, and Markets: Reasoning About a Highly Connected World.
Cambridge University Press, Cambridge, 2010.

Ernesto Estrada and Philip A. Knight.

A First Course in Network Theory.
Oxford University Press, 2015.

Daniel R. Figueiredo, Leonardo F. R. Ribeiro, and Pedro H. P. Saverese.

struc2vec: Learning node representations from structural identity.
In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1–9, 2017.

Aditya Grover and Jure Leskovec.

node2vec: Scalable feature learning for networks.
In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec.

Inductive representation learning on large graphs.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.



learning references

Thomas N. Kipf and Max Welling.

Semi-Supervised Classification with Graph Convolutional Networks.
In Proceedings of the 5th International Conference on Learning Representations, ICLR ’17, 2017.

Ilya Makarov, Dmitry Kiselev, Nikita Nikitinsky, and Lovro Šubelj.
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