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Motivation

Dynamics of online conversations
▶ Temporal dimension

▶ What temporal patterns govern these social phenomena?
▶ Can we predict popularity of news?

▶ Structural dimension
▶ Can we model how conversation trees evolve in time?
▶ Can we characterise user behaviour in terms of this model?



Motivation

General methodology
▶ Parsimonious data-driven approach

▶ Few parameters that are interpretable
▶ Simple optimisation problems

▶ Role of the content
▶ Explain as much as possible without considering content

▶ Analysis at the population level
▶ Single-user data is too noisy
▶ Aggregate analysis averages out the noise



Motivation
Example of conversation in Slashdot (post):



Motivation
Example of conversation in Slashdot (comments):



Motivation
Example of conversation threads in Meneame:



Motivation
Example of conversation in Wikipedia:
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Motivation
Scientific questions

Temporal patterns in news aggregators
[Kaltenbrunner et al, 2007]
▶ What are the temporal patterns governing these responses?
▶ Is there a mathematical law that describes this patterns?
▶ Can we use this law to predict number of votes (popularity) in the

long term?

Structure and evolution of conversation threads
[Gómez et al, 2013]
▶ What are the structural patterns governing these responses?
▶ Is there a generative model that captures their statistical properties?
▶ Can we use the model parameters to characterize websites, user

behaviour, conversations?



Preliminaries
The Log-Normal distribution
▶ Continuous probability distribution of a random variable

whose logarithm is normally distributed

fLN(t; µ, σ) = 1
tσ

√
2π

exp
(

−(ln(t) − µ)2

2σ2
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Preliminaries

Fitting log-normal distributions
▶ A dataset of points is given t = t1, . . . , tn
▶ Maximum likelihood

L(t; µ, σ) =
n∏

i=1

( 1
ti

)
N (ln ti ; µ, σ)

▶ Closed form

µ̂ =
∑

i ln ti
n

σ̂2 =
∑

i(ln ti − µ̂)2)
n

▶ Alternatively: using fminsearch in Matlab or similar tools



Temporal patterns of Slashdot
Time series of total number of comments
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 (c)

Comments all year
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Posts all year

▶ "Sustained" activity coupled with the circadian rythm.



Temporal patterns of Slashdot

Statistical approach for analyzing reaction times
▶ Guess a candidate probability distribution F for reaction times
▶ Kolmogorov-Smirnov (KS) test
▶ Following hypothesis

▶ H0: The reaction time is a sample of distribution F
▶ H1: The hypothesis H0 is not true

▶ Compute point-wise maximal difference between the CDF of
the data and the approximation (KS statistic)

▶ Calculate the p-value: probability of obtaining a result as
different as F as the data

▶ The greater the p-value, the better the fit
▶ For a chosen level of significance α0, the hypothesis H0 is

accepted



Temporal patterns of Slashdot
Log-normal model and circadian cycle
▶ Incorporating the circadian cycle in the log-normal model

fLNxC(t; µ, σ, C(·)) = 1
tσ

√
2π

exp
(

−(ln(t) − µ)2

2σ2

)
C(t)

The function C(·) is computed from the data
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Temporal patterns of Slashdot

A mixture of two log-normals
▶ A more flexible model
▶ Linear combination of two log-normals

fDLN(t; θ) = kfLN(t; µ1, σ1) + (1 − k)fLN(t; µ2, σ2)

▶ Parameters θ = (k, µ1, σ1, µ2, σ2)

A mixture of two log-normals with circadian cycle
▶ Incorporating the circadian cycle in the mixture log-normal

model

fDLNxC(t; θ) = (kfLN(t; µ1, σ1) + (1 − k)fLN(t; µ2, σ2)) C(t)

▶ Parameters θ = (k, µ1, σ1, µ2, σ2, C(·))



Temporal patterns of Slashdot

Summary of models
▶ (LN) Single log-normal model
▶ (LNxC) Single log-normal model with circadian cycle
▶ (DLN) Double log-normal model
▶ (DLNxC) Double log-normal model with circadian cycle

Tasks
▶ Model comparison
▶ Which model is better? How much? Why?
▶ Can we interpret the parameters?



Temporal patterns of Slashdot
Single-post analysis (post published in the afternoon)



Temporal patterns of Slashdot
Single-post analysis (post published during night)



Temporal patterns of Slashdot

Some conclusions
▶ All posts show a stereotyped behavior
▶ Accurate fitting using models based on log-normal

distributions
▶ LN model performs well for post published in daylight
▶ DLNxC model outperforms LN for post published during night



Temporal patterns of Slashdot

Approximating all posts
▶ Analysis of distribution of KS statistic and p-values

▶ LN model explains 83% of the posts
▶ Incorporating cycle in LN improves significantly
▶ DLNxC and DLN account form more than 99% of the data
▶ DLN accounts for the main part of variation caused by the

circadian rhythm



Temporal patterns of Slashdot
Qualitative explanation: Two waves of activity
▶ First wave: locked to the post publication
▶ Second wave: depends on the publication hour
▶ Only the first wave is necessary in a short interval.



Temporal patterns of Slashdot

Popularity prediction
▶ At time t we want to predict the number of comments in

the next s minutes of a post published x minutes ago and has
received until now N comments

▶ Use available data window [t − x , t] and predict the number
of comments M in the prediction window (t, t + s].

Challenges
▶ Large variability between posts
▶ Transient behaviour (sharp initial raise)
▶ Heavy tails: difficult to simply extrapolate based on evidence
▶ Limited information (no content)



Temporal patterns of Slashdot
Popularity prediction
▶ At time t we want to predict the number of comments in

the next s minutes of a post published x minutes ago and has
received until now N comments

▶ Use available data window [t − x , t] and predict the number
of comments M in the prediction window (t, t + s].

Methodology
▶ Compute DLN prototypes, one for every hour of the day
▶ Prediction is made by rescaling the corresponding prototype

given the limited data window
▶ Use older posts (first months of data) as training set
▶ Error measure (relative):

ϵ = |(Mpredicted − Mreal)/Mreal|



Temporal patterns of Slashdot

Popularity prediction: two illustrative examples

▶ Prediction of post1 is satisfactory at all times
▶ Prediction of post2 is satisfactory until 8 hours and

overestimated afterward



Temporal patterns of Slashdot
Popularity prediction: results

▶ Best results are obtained for a 24 hour prediction
▶ Num. comments more relevant than data window length
▶ Error increases in the tail: large number of posts with a very

low number of comments in the prediction window



Alternative way to deal with Activity Cycles

Rescale Time

▶ Image from (ten Thij et al., 2019)
▶ measure time in activity not in minutes



Alternative way to deal with Activity Cycles

Rescale Time

▶ Image from [ten Thij et al., 2019]
▶ Show regular decay of interest in new Items on Wikipedia’s

Featured Articles



Temporal patterns of Slashdot

Conclusions
▶ A parsimonious approach that disregards content is valid
▶ DLN distributions provide an excellent explanation for the

reaction times
▶ Parameters have a nice interpretation: two waves of activity,

each corresponding to a LN
▶ In some cases, this approach allows for reliable prediction

based on limited amounts of data
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Motivation
Scientific questions

Temporal patterns in news aggregators
[Kaltenbrunner et al, 2007]
▶ What are the temporal patterns governing these responses?
▶ Is there a mathematical law that describes this patterns?
▶ Can we use this law to predict number of votes (popularity) in the

long term?

Structure and evolution of conversation threads
[Gómez et al, 2013]
▶ What are the structural patterns governing these responses?
▶ Is there a generative model that captures their statistical properties?
▶ Can we use the model parameters to characterize websites, user

behaviour, conversations?



Modeling conversation threads

Example of online conversation

Title: "Can Ordinary PC Users Ditch Windows for Linux?
▶ Online conversations as networks: nodes correspond to

comments, edges represent a reply action



Modeling conversation threads

Datasets:
Slashdot (SL) : Technological news aggregator.

473, 065 conversations, 2 · 106 comments, 93 · 103

users
Barrapunto (BP) : Spanish version of Slashdot.

44, 208 conversations, 4 · 105 comments, 50 · 103 users
Meneame (MN) : Spanish Digg clone (general news aggregator)

58, 613 conversations, 2.1 · 106 comments, 5, 4 · 104

users
Wikipedia (WK) : conversation pages related to every article.

871, 485 conversations, ≈ 107 comments, 3.5 · 105

users



Modeling conversation threads

General approach
▶ Suggest features based on prior empirical analysis
▶ Propose a generative model
▶ Learn the model parameters based on data
▶ Interpret, understand, predict the real system based on the

learned parameters

Bottom-up
▶ Simple models are preferable (only a few features are relevant)
▶ First approach

▶ Discard content, discard user network
▶ Assume threads size is known



Modeling conversation threads

General approach:
▶ The threads growth model must reproduce

▶ Their statistical structure
▶ Their evolution

▶ No content involved
▶ No authorship
▶ Essentially "Which comment is going to be replied next?"

Empirical facts
▶ Popular comments receive more replies: preferential

attachment
▶ New comments are more attractive than old ones
▶ Replies to the post behave different than replies to comments



Modeling conversation threads
Representation of a conversation
▶ vector of parent nodes π, where πt denotes the parent of the

node with id t + 1 added at time-step t

π0 = ()
π1 = (1)

...
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832
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Modeling conversation threads

Parameters of the model: popularity
▶ At time t, the popularity of node k is its degree

dk,t(π(1:t−1)) =
{

1 +
∑t−1

m=2 δkπm for k ∈ {1, . . . , t}
0 otherwise,

▶ dk,t is weighted by α



Modeling conversation threads

Parameters of the model: novelty
▶ At time t, the novelty of node k is

nk,t = τ t−k+1, τ ∈ [0, 1]

▶ Captures an exponential decay of novelty



Modeling conversation threads

Parameters of the model: root bias
▶ The bias of a node k is is either zero or β for the root:

bk = β, for k = 1, and 0 otherwise

▶ Captures the different law governing post replies and replies to
comments



Modeling conversation threads

Model definition
▶ We define a model by means of its associated atractiveness

function ϕ(·), which is defined for each of the nodes.
▶ At time t + 1, a new node is linked to node k with probability:

p(πt = k|π(1:t−1)) = ϕ(k)
Zt

, Zt =
t∑

l=1
ϕ(l),

Different model variants
▶ Full model (FM)

ϕ(k) = αdk,t + bk + τ t−k+1

▶ Parameters {α, τ, β}



Modeling conversation threads

Model definition
▶ We define a model by means of its associated atractiveness

function ϕ(·), which is defined for each of the nodes.
▶ At time t + 1, a new node is linked to node k with probability:

p(πt = k|π(1:t−1)) = ϕ(k)
Zt

, Zt =
t∑

l=1
ϕ(l),

Different model variants
▶ Model without popularity model (NO-α)

ϕ(k) = bk + τ t−k+1

▶ Parameters {τ, β}, α = 0



Modeling conversation threads

Model definition
▶ We define a model by means of its associated atractiveness

function ϕ(·), which is defined for each of the nodes.
▶ At time t + 1, a new node is linked to node k with probability:

p(πt = k|π(1:t−1)) = ϕ(k)
Zt

, Zt =
t∑

l=1
ϕ(l),

Different model variants
▶ Model without novelty (NO-τ)

ϕ(k) = αdk,t + bk + 1

▶ Parameters {α, β}, τ = 1



Modeling conversation threads

Model definition
▶ We define a model by means of its associated atractiveness

function ϕ(·), which is defined for each of the nodes.
▶ At time t + 1, a new node is linked to node k with probability:

p(πt = k|π(1:t−1)) = ϕ(k)
Zt

, Zt =
t∑

l=1
ϕ(l),

Different model variants
▶ Model without bias (NO-bias)

ϕ(k) = αdk,t + τ t−k+1

▶ Parameters {α, τ}, β = 0



Modeling conversation threads

Parameter estimation
▶ Maximum likelihood
▶ Given a set Π := {π1, . . . πN} of N trees with respective sizes

|πi |, i ∈ {1, . . . N}, the likelihood for θ can be written as

L(Π|θ) =
N∏

i=1
p(πi |θ)

=
N∏

i=1

|πi |∏
t=2

p(πt,i |π(1:t−1),i , θ)

=
N∏

i=1

|πi |∏
t=2

ϕ(πt,i)
Zt,i



Modeling conversation threads

Parameter estimation
▶ Minimization problem

− log L(Π|θ) = −
N∑

i=1

|πi |∑
t=2

log ϕ(πt,i) + log Zt,i



Modeling conversation threads

Global analysis of the data
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▶ SL, BP and MN present a distribution with a defined scale.
▶ Discussion sizes in Wikipedia seem to be scale-free.



Parameter estimation

Validation
▶ Choose θ∗ randomly
▶ Generate N threads
▶ Find estimates θ̂

▶ Compute residuals θ∗ − θ̂

▶ Repeat for 100 times.



Modeling conversation threads
Validation
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▶ Estimation is unbiased
▶ Good estimates can be obtained using N = 50



Modeling conversation threads
Model Comparison

For each dataset:

▶ Select N threads
randomly with
replacement

▶ Find estimates θ̂.
▶ Compute likelihoods

▶ Model comparison
based on likelihoods for
each dataset

4.15 4.2 4.25 4.3 4.35

x 10
6

Slashdot

Mean negative log−likelihood

no−bias

no−τ

no−α

FM

7 7.1 7.2 7.3 7.4

x 10
5

Barrapunto

Mean negative log−likelihood

no−bias

no−τ

no−α

FM

2.8 3 3.2 3.4 3.6 3.8

x 10
5

Meneame

Mean negative log−likelihood

no−bias

no−τ

no−α

FM

0.8 1 1.2 1.4 1.6

x 10
5

Wikipedia

Mean negative log−likelihood

no−bias

no−τ

no−α

FM



Modeling conversation threads
Parameter estimates for the different datasets

Dataset log β α τ
N = 50

SL 2.39 (0.17) 0.31 (0.02) 0.98 (0.02)
BP 0.93 (0.12) 0.08 (0.04) 0.92 (0.00)
MN 1.66 (0.16) 0.03 (0.01) 0.72 (0.04)
WK −0.21 (0.81) 0.00 (0.00) 0.40 (0.19)

N = 5000
SL 2.39 (0.01) 0.31 (0.01) 0.98 (0.00)
BP 0.96 (0.02) 0.08 (0.00) 0.92 (0.00)
MN 1.69 (0.03) 0.02 (0.00) 0.74 (0.01)
WK 0.39 (0.22) 0.00 (0.00) 0.60 (0.01)

▶ Bootstrap with N = 50 threads
already gives good estimates
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Modeling conversation threads

Validation of the model
▶ Original data versus synthetic threads produced by the model

▶ Degrees distribution
▶ Subtree sizes distribution
▶ Mean node depth versus size
▶ Node depths distribution

Generating threads
▶ Threads sizes are drawn from the empirical distribution
▶ We use model NO-BIAS for comparison



Modeling conversation threads
Barrapunto dataset

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

Total degrees

pr
ob

ab
ili

ty

 

 

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

Barrapunto

subtree sizes
pr

ob
ab

ili
ty

10
0

10
1

10
2

10
3

10
4

10
1

size

de
pt

h

0 5 10 15 20
0

0.1

0.2

0.3

depth

pr
ob

ab
ili

ty

data
no−bias
FM



Modeling conversation threads
Slashdot dataset
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Modeling conversation threads
Meneame dataset
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Modeling conversation threads
Wikipedia dataset
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Growing tree model for conversation threads
Comparison between real and synthetic threads

Real threads:

Synthetic threads:



Evolution of mean depths and mean widths

FULL MODEL:
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Modeling conversation threads
Adding authorship

Extending the model
▶ Main interest: understanding user behavior
▶ Is the author relevant to determine the structure of the

discussion?
▶ Can we extend minimally the model to incorporate authorship?

Design choices
▶ User → Discussion?
▶ Discussion → User?
▶ Empirical observation: Reciprocity

▶ User A tends to reply user B who
previously replied to A



Modeling conversation threads
Adding authorship

Extending the model
▶ Two coupled processes
▶ Growing authorship vector a1:t = (a1, a2, . . . , at)
▶ In addition to π1:t = (π1, π2, . . . , πt)
▶ At time t + 1

▶ A new author is created with pnew
▶ An existing author ν is chosen, otherwise

▶ If existing author ν, chosen according to the number of replies
to ν in the thread, rν

p(at+1 = v |a1:t , π1:t) =

pnew , for v = U + 1
(1−pnew )2rv∑U

i=1 2ri
, for v ∈ 1, . . . , U



Modeling conversation threads
Adding authorship

Extending the model
▶ New reciprocity parameter κ, θ′ = (α, τ, β, κ)
▶ Extended attractiveness function ϕ′

j(·)

ϕ′
j(π1:t , a1:t ; θ′) := ϕj(π1:t ; θ) + κδaπj ,at+1

▶ Leads to the extended full model

p′(πt+1 = j |π1:t , a1:t ; θ′) ∝ ϕ′
j(π1:t , a1:t ; θ′)

▶ Only when aπj = at+1, κ-term
κ = 0 : the new feature will play no role
κ ≫ 0 : all comments reciprocal

▶ Optimization of θ′ using maximum likelihood



Modeling conversation threads
Adding authorship

Model comparison (degrees, subthread sizes, depth vs size)

number of replies
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▶ Features are reproduced better thanks to the authorship
model and the reciprocity feature



Modeling conversation threads
Adding authorship

Model comparison (thread depths)

depth
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data
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▶ original model is FULL model
▶ Extended model reproduces the long tail created by reciprocal

message chains accurately



Conclusions and current directions

Conclusions
▶ Framework which allows to re-create conversations with

similar structural features as real instances
▶ Model captures the large heterogeneity of the data
▶ Parameters allow to characterize audience and platform:

▶ Same platform : differences between SL and BP
▶ Influence of the interface: MN (flat) characterized by bias
▶ Main difference between news media and WK: popularity

▶ A minimal increase in complexity (authorship and reciprocity)
greatly improves the overall descriptive power of the model



Application : Evaluation of platform design

● Can be used to assess the impact of a given design element on the user 
interaction patterns on a platform.

● Shows the interdependency between user interaction patterns and platform 
design elements. 

● Can be exploited to help site owners and community managers to create a 
positive and constructive environment for large scale online discussions.



Application: Evaluation of platform design

Example: Change of how conversation threads are presented

● Aragón et al. [2017] analyze the impact of threaded vs. 
non-threaded conversation views

Aragón P., Gómez V., 
Kaltenbrunner A. (2017) 
To Thread or Not to Thread: The 
Impact of Conversation Threading 
on Online Discussion,
ICWSM-17, Montreal, Canada.



Aragón et al. [2017] Visual differences visible

Application: Evaluation of platform design

 Thread in 2013   Thread in 2015
  (linear view)     (hierarchical view)



Application: Evaluation of platform design

● Aragón et al. [2017] Behavioural features of a generative model undergo an 
notable increase when conversation threading is released (Jan 2015)

● Change in design can be detected with Regression Discontinuity Design applied on model 
parameters



Open challenges

● Competition between discussion threads
● Impact of sub-communities
● The role of content
● Influencing user activity



A related Tutorial

● Generative models of online discussion threads

https://www.upf.edu/web/ai-ml/tutorial-ICWSM

● Related code (in R)

https://github.com/alumbreras/discussion-threads
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