graphology & *networkology*

introduction to network analysis (ina)

Lovro Šubelj University of Ljubljana spring 2024/25

terminology graphs & networks

— *synonyms* perspective

- network science perspective
 - network is some real-world system
 - graph is representation of network
- graph theory perspective
 - graph is formal mathematical object
 - network is graph with real data
- but Web graph, Internet map

terminology nodes & links

- network science terminology
 - nodes and edges/links
- graph theory terminology
 - vertices/points and edges/relations
- social science terminology
 - agents/brokers/units and ties

terminology *classes*

— *social* networks

- nodes are people or animals, links are some interactions
- Facebook, offline, online, affiliation, author/actor collaboration
- information networks
 - nodes are information sources, links show information flow
 - Web, Twitter, citation, communication, peer-to-peer
- technological networks
 - human-made infrastructure with *technological constraints*
 - Internet, telephone, transportation, power grid, software
- *biological* networks
 - interaction between genes, cells, neurons in living beings
 - gene regulatory, metabolic, protein interaction, neural
- ecological, lexical, financial, sports etc. networks

graphology graphs & digraphs

— simple graph G is defined by

- set of nodes $N = \{1, 2 \dots n\}$
- set of links *L* where m = |L|
- if G is *undirected* then $L \subseteq \{\{i, j\} | i, j \in N\}$
- if G is *directed* then $L \subseteq \{(i,j) | i, j \in N\}$

graphology *adjacency*

— adjacency matrix A is $n \times n$ matrix defined as

$$-A_{ij} = 1$$
 if there is link from j to i

$$-A_{ij} = 0$$
 if $i = j$ or otherwise

- if G is *undirected* then $A_{ij} = A_{ji}$ and $\sum_{ij} A_{ij} = 2m$
- if G is *directed* then $A_{ij} \neq A_{ji}$ and $\sum_{ij} A_{ij} = m$

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
undirected graph directed graph

graphology *multigraphs**

^{*}spatial graphs \equiv nodes with locations & temporal graphs \equiv nodes/edges with timestamps

graphology *multipartite*

- undirected *bipartite graph* G_B is defined by
 - sets of nodes $N_1 = \{1, 2..., n_1\}$ and $N_2 = \{1, 2..., n_2\}$
 - set of *m* links $\subseteq N_1 \times N_2$
- *incidence matrix* B is $n_2 \times n_1$ matrix defined as
 - $-B_{ij} = 1$ if there is link between j and i
 - $-B_{ij}=0$ otherwise
- (one-mode) projections are multigraphs with

$$A = B^T B - D_1 \qquad A = BB^T - D_2$$

networkology *multi-mode*[†]

bipartite or two-mode network

tripartite graph or three-mode network

^Tknowledge graphs ≡ "super" heterogeneous multi-mode networks

graphology *degrees*

— for undirected G degree k_i of i is number of incident links $k_i = \sum_j A_{ij} = \sum_j A_{ji}$

— for directed G degree $k_i = k_i^{in} + k_i^{out}$

- in-degree k_i^{in} of i is number of incoming links

- out-degree k_i^{out} of *i* is number of outgoing links $k_i^{out} = \sum_j A_{ji}$

 $k_i^{in} = \sum_i A_{ii}$

— thus (network) average degree $\langle k \rangle$ or $\langle k^{\cdot} \rangle$ are $\langle k \rangle = 2m/n \qquad \langle k^{in} \rangle = \langle k^{out} \rangle = m/n$

networkology *degrees*

— average degree $\langle k \rangle$ of real networks [Bar16]

— mostly $\langle k \rangle \leq 10$ despite very different n

NETWORK	NODES	LINKS	DIRECTED	N		(k)
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.34
WWW	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4.941	6,594	2.67
Mobile Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorship	Undirected	23,133	93.439	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Paper	Citations	Directed	449,673	4,689,479	10.43
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.90

— but $\langle k \rangle = 190.5$ for *Facebook* friendships [BBR+12]

graphology *density*

 $\begin{array}{l} -- \ G \ \text{is dense if } \rho \to > 0 \ \text{as } n \to \infty \ \text{thus } \langle k \rangle = \mathcal{O}(n) \\ -- \ G \ \text{is sparse if } \rho \to 0 \ \text{as } n \to \infty \ \text{thus } \langle k \rangle \neq \mathcal{O}(n) \end{array}$

networkology density

- density ρ and degree $\langle k \rangle$ of real networks [LJT+11]
- real networks are sparse $\rho \approx \mathcal{O}(n^{-1})$ and $\langle k \rangle \ll n$

 $- \rho \approx \frac{2 \cdot 69 \cdot 10^9}{721^2 \cdot 10^{12}} < 10^{-6} \text{ for } Facebook \text{ friendships [BBR+12]}$ - thus A of real networks is almost all zeros $m \approx \mathcal{O}(n)$ graphology degree distribution

— for undirected G degree distribution p_k is defined as

- n_k is number of *degree-k* nodes

 $p_{k} = n_{k}/n \qquad \sum_{k} p_{k} = 1 \qquad \langle k \rangle = \sum_{k} k p_{k}$ - for directed G in-/out-degree distributions p_{k}^{in} and p_{k}^{out} - n_{k}^{in} and n_{k}^{out} is number of in-/out-degree-k nodes $p_{k}^{in} = n_{k}^{in}/n \qquad \sum_{k} p_{k}^{in} = 1 \qquad \langle k^{in} \rangle = \sum_{k} k p_{k}^{in}$

networkology degree distribution

- heavy-tail distribution pk of protein network [Bar16]
- nodes with very high $k \gg \langle k \rangle$ are called hubs

pathology connectivity

— for undirected G path P_{ij} is sequence of links between i and j

- connected component is maximal subset thus $\forall i, j : \exists P_{ij}$
- giant component contains nontrivial fraction of nodes
- connected G has only one connected component
- for directed G path $\overrightarrow{P_{ij}}$ is seq. of directed links from i to j

- weak/strong connectivity defined through P and \overrightarrow{P}

networkology connectivity

- giant/largest component of protein network [Bar16]

giant > 99.7% for *Facebook* friendships [BBR⁺12]
 could real network have *two giant components*?

pathology distances

- *length* of path *P* or \overrightarrow{P} is number of *links/hops*

- geodesic path G_{ij} or $\overrightarrow{G_{ij}}$ is any shortest P_{ij} or $\overrightarrow{P_{ij}}$
- distance d_{ij} between i and j is length of G_{ij} or $\overrightarrow{G_{ij}}$
- (network) diameter d_{max} or D is maximum d_{ij}
- (network) average distance $\langle d \rangle = \ell$ and ℓ^{-1} is defined as
 - $\begin{array}{l} \ d_{ij} = 0 \ \text{and} \ d_{ij} = \infty \ \text{for} \ i \ \text{and} \ j \ \text{in different components} \\ \langle d \rangle = \frac{1}{n(n-1)} \sum_{i \neq j} d_{ij} \qquad \qquad \ell^{-1} = \frac{1}{n(n-1)} \sum_{i \neq j} \frac{1}{d_{ij}} \end{array}$

networkology distances

- distance distribution p_d of protein network [Bar16]
- most nodes are on *similar distance* $d \approx \langle d \rangle$

 $- \langle d \rangle = 4.74 \text{ for } Facebook \text{ friendships [BBR+12]}$ - real networks have surprisingly small $\langle d \rangle \ll n$

graphology *clustering*

— for undirected G node clustering coefficient C_i of i is

- t_i is number of linked neighbors or triangles of i

 $C_i = rac{t_i}{{k_i \choose 2}}$ $C_i = 0$ for $k_i \le 1$

— average clustering coefficient $\langle C \rangle$ [WS98] is defined as $\langle C \rangle = \frac{1}{n} \sum_{i} C_{i}$

— network clustering coefficient C [NSW01] is defined as

 $C = \frac{3 \times \text{number of triangles/closed triads}}{\text{number of linked triples/connected triads}}$

networkology *clustering*

- clustering distribution C(k) of protein network [Bar16]
- hubs have much lower C than nodes with $k \approx \langle k \rangle$

$$\label{eq:main_constraint} \begin{split} &- \langle C \rangle = 0.61 \text{ for } \textit{Facebook} \text{ social circles [ML12]} \\ &- \text{ real (social) networks have } \textit{significant} \langle C \rangle \gg 0 \end{split}$$

networkology references

A.-L. Barabási.

Network Science

Cambridge University Press, Cambridge, 2016.

Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna.

Four degrees of separation.

In Proceedings of the ACM International Conference on Web Science, pages 45–54, Evanston, IL, USA, 2012.

Wouter de Nooy, Andrej Mrvar, and Vladimir Batagelj.

Exploratory Social Network Analysis with Pajek: Expanded and Revised Second Edition. Cambridge University Press, Cambridge, 2011.

David Easley and Jon Kleinberg.

Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge, 2010.

Ernesto Estrada and Philip A. Knight.

A First Course in Network Theory. Oxford University Press, 2015.

Paul J. Laurienti, Karen E. Joyce, Qawi K. Telesford, Jonathan H. Burdette, and Satoru Hayasaka. Universal fractal scaling of self-organized networks. *Physica A*, 390(20):3608–3613, 2011.

Seth A. Myers and Jure Leskovec.

Clash of the contagions: Cooperation and competition in information diffusion. In Proceedings of the IEEE International Conference on Data Mining, 2012.

Mark E. J. Newman.

Networks. Oxford University Press, Oxford, 2nd edition, 2018.

networkology *references*

M. E. J. Newman, S. H. Strogatz, and D. J. Watts.

Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E, 64(2):026118, 2001.

D. J. Watts and S. H. Strogatz.

Collective dynamics of 'small-world' networks. Nature, 393(6684):440–442, 1998.