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terminology graphs & networks

— synonyms perspective

— network science perspective

– network is some real-world system
– graph is representation of network

— graph theory perspective

– graph is formal mathematical object
– network is graph with real data

— but Web graph, Internet map

network another network same graph
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terminology nodes & links

— network science terminology

– nodes and edges/links

— graph theory terminology

– vertices/points and edges/relations

— social science terminology

– agents/brokers/units and ties

nodes & links agents & ties vertices & edges

2/20 © Lovro Šubelj



terminology classes

— social networks

– nodes are people or animals, links are some interactions
– Facebook, offline, online, affiliation, author/actor collaboration

— information networks

– nodes are information sources, links show information flow
– Web, Twitter, citation, communication, peer-to-peer

— technological networks

– human-made infrastructure with technological constraints
– Internet, telephone, transportation, power grid, software

— biological networks

– interaction between genes, cells, neurons in living beings
– gene regulatory, metabolic, protein interaction, neural

— ecological, lexical, financial, sports etc. networks
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graphology graphs & digraphs

— simple graph G is defined by

– set of nodes N = {1, 2 . . . n}
– set of links L where m = |L|

— if G is undirected then L ⊆ {{i , j}| i , j ∈ N}
— if G is directed then L ⊆ {(i , j)| i , j ∈ N}

undirected graph directed graph
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graphology adjacency

— adjacency matrix A is n × n matrix defined as

– Aij = 1 if there is link from j to i
– Aij = 0 if i = j or otherwise

— if G is undirected then Aij = Aji and
∑

ij Aij = 2m

— if G is directed then Aij ̸= Aji and
∑

ij Aij = m

A =


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0


undirected graph

A =


0 0 1 0
1 0 0 0
0 1 0 0
0 1 0 0


directed graph
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graphology multigraphs∗

simple undirected
Aij = Aji ∈ {0, 1}

simple directed
Aij ̸= Aji ∈ {0, 1}

multigraph Aij ∈ N0 loops Aii ∈ {2 , 4 , . . . } weighted Wij ∈ R≥0

∗
spatial graphs ≡ nodes with locations & temporal graphs ≡ nodes/edges with timestamps
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graphology multipartite

— undirected bipartite graph GB is defined by

– sets of nodes N1 = {1, 2 . . . n1} and N2 = {1, 2 . . . n2}
– set of m links ⊆ N1 × N2

— incidence matrix B is n2 × n1 matrix defined as

– Bij = 1 if there is link between j and i
– Bij = 0 otherwise

— (one-mode) projections are multigraphs with

A = BTB − D1 A = BBT − D2

bipartite graph & projections

B =


1 1 1 0 0 0 0
0 1 0 0 1 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 1


incidence matrix
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networkology multi-mode†

bipartite or two-mode network tripartite graph or three-mode network

†
knowledge graphs ≡ “super” heterogeneous multi-mode networks
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graphology degrees

— for undirected G degree ki of i is number of incident links

ki =
∑

j Aij =
∑

j Aji

— for directed G degree ki = k ini + kouti

– in-degree k in
i of i is number of incoming links

k in
i =

∑
j Aij

– out-degree kout
i of i is number of outgoing links

kout
i =

∑
j Aji

— thus (network) average degree ⟨k⟩ or ⟨k ·⟩ are
⟨k⟩ = 2m/n ⟨k in⟩ = ⟨kout⟩ = m/n
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networkology degrees

— average degree ⟨k⟩ of real networks [Bar16]
— mostly ⟨k⟩ ≤ 10 despite very different n

— but ⟨k⟩ = 190.5 for Facebook friendships [BBR+12]
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graphology density

— for undirected G density ρ is defined as

ρ = m

(n2)
= 2m

n(n−1) =
⟨k⟩
n−1

— for directed G density ρ· is defined as

ρ· = m
n(n−1) =

⟨k in⟩
n−1 = ⟨kout⟩

n−1

tree m = n − 1 complete m =
(n
2

)
— G is dense if ρ → > 0 as n → ∞ thus ⟨k⟩ = O(n)

— G is sparse if ρ → 0 as n → ∞ thus ⟨k⟩ ≠ O(n)
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networkology density

— density ρ and degree ⟨k⟩ of real networks [LJT+11]

— real networks are sparse ρ ≈ O(n−1 ) and ⟨k⟩ ≪ n

— ρ ≈ 2·69·109
7212·1012 < 10−6 for Facebook friendships [BBR+12]

— thus A of real networks is almost all zeros m ≈ O(n)
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graphology degree distribution

— for undirected G degree distribution pk is defined as

– nk is number of degree-k nodes

pk = nk/n
∑

k pk = 1 ⟨k⟩ =
∑

k kpk

— for directed G in-/out-degree distributions pink and poutk

– nink and noutk is number of in-/out-degree-k nodes

pink = nink /n
∑

k p
in
k = 1 ⟨k in⟩ =

∑
k kp

in
k
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networkology degree distribution

— heavy-tail distribution pk of protein network [Bar16]

— nodes with very high k ≫ ⟨k⟩ are called hubs
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pathology connectivity

— for undirected G path Pij is sequence of links between i and j

– connected component is maximal subset thus ∀i , j : ∃Pij

– giant component contains nontrivial fraction of nodes
– connected G has only one connected component

— for directed G path
−→
Pij is seq. of directed links from i to j

– weak/strong connectivity defined through P and
−→
P

paths P17 (dis)connected with bridge one WCC/two SCC
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networkology connectivity

— giant/largest component of protein network [Bar16]

— giant > 99.7% for Facebook friendships [BBR+12]

— could real network have two giant components?
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pathology distances

— length of path P or
−→
P is number of links/hops

— geodesic path Gij or
−→
Gij is any shortest Pij or

−→
Pij

— distance dij between i and j is length of Gij or
−→
Gij

— (network) diameter dmax or D is maximum dij

— (network) average distance ⟨d⟩ = ℓ and ℓ−1 is defined as

– dij = 0 and dij = ∞ for i and j in different components

⟨d⟩ = 1
n(n−1)

∑
i ̸=j dij ℓ−1 = 1

n(n−1)

∑
i ̸=j

1
dij

P13 ̸= G13 d14 = 3 ⟨d⟩ = 1.6
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networkology distances

— distance distribution pd of protein network [Bar16]

— most nodes are on similar distance d ≈ ⟨d⟩

— ⟨d⟩ = 4.74 for Facebook friendships [BBR+12]

— real networks have surprisingly small ⟨d⟩ ≪ n
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graphology clustering

— for undirected G node clustering coefficient Ci of i is

– ti is number of linked neighbors or triangles of i

Ci =
ti
(ki2)

Ci = 0 for ki ≤ 1

— average clustering coefficient ⟨C ⟩ [WS98] is defined as

⟨C ⟩ = 1
n

∑
i Ci

— network clustering coefficient C [NSW01] is defined as

C =
3 x number of triangles/closed triads

number of linked triples/connected triads

⟨C⟩ = 13
7·6 = 0.31 C = 3·2

16
= 0.38
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networkology clustering

— clustering distribution C (k) of protein network [Bar16]

— hubs have much lower C than nodes with k ≈ ⟨k⟩

— ⟨C ⟩ = 0.61 for Facebook social circles [ML12]

— real (social) networks have significant ⟨C ⟩ ≫ 0
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