Erdős-Rényi random graph

introduction to network analysis (ina)

Lovro Šubelj University of Ljubljana spring 2024/25

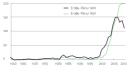
graph models

- graph model is ensemble of random graphs
- *algorithm* for random graphs of given parameters
 - baseline for network structure statistics
 - for reasoning about network evolution
 - for generating new large graphs
- random graph refers to Erdős-Rényi model [ER59]

assume *undirected* G from now on

Pál Erdős

Alfréd Rényi



Erdős-Rényi model

graph G(n, m) model

- G(n, m) random graph model [ER59]
- randomly place m links between $\binom{n}{2}$ node pairs
- computationally convenient but analytically hard

n, m given $\langle k \rangle = 2m/n$

input parameters *n*, *m* output graph *G*

- 1: $G \leftarrow n$ isolated nodes
- 2: while not G has m links do
- 3: add link btw random node pair
- 4: return G

graph G(n, p) model

- G(n, p) random graph model [SR51]
- place links between $\binom{n}{2}$ node pairs with probability p
- computationally hard but analytically convenient

n, p given $m, \langle k \rangle$ unknown

input parameters *n*, *p* output graph *G*

- 1: $G \leftarrow n$ isolated nodes
- 2: for all $\binom{n}{2}$ node pairs in *G* do
- 3: add link with probability p
- 4: return G

graph density & degree

- number of links *m* follows binomial distribution $B(\binom{n}{2}, p)$ $x \sim B(n, p)$ then $p_x = \binom{n}{x} p^x (1-p)^{n-x}$ and $\langle x \rangle = np$ $\langle m \rangle = \sum_{m=0}^{\binom{n}{2}} mP(m) = \sum_{m=0}^{\binom{n}{2}} m\binom{\binom{n}{2}}{m} p^m (1-p)^{\binom{n}{2}-m} = \binom{n}{2}p$

— then density $\rho = p$ and average degree $\langle k \rangle = (n-1)p$

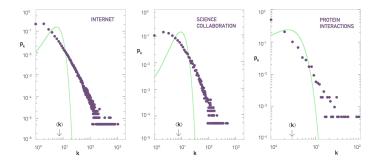
graph degree distribution

- degree distribution p_k is also binomial distribution B(n-1,p) $x \sim B(n,p)$ then $p_x = \binom{n}{x} p^x (1-p)^{n-x}$ and $\langle x \rangle = np$ $p_k = \binom{n-1}{k} p^k (1-p)^{n-1-k}$

- p_k approximately Poisson distribution $\operatorname{Pois}(\langle k \rangle)$ for $n \gg \langle k \rangle$ $x \sim \operatorname{Pois}(\lambda)$ then $p_x = \frac{\lambda^x e^{-\lambda}}{x!}$ and $\langle x \rangle = \lambda$ $\ln \left[(1-p)^{n-1-k} \right] = (n-1-k) \ln \left(1 - \frac{\langle k \rangle}{n-1} \right) \simeq -(n-1-k) \frac{\langle k \rangle}{n-1} \simeq -\langle k \rangle$ $p_k \simeq \frac{(n-1)^k}{k!} \left(\frac{\langle k \rangle}{n-1} \right)^k e^{-\langle k \rangle} = \frac{\langle k \rangle^k e^{-\langle k \rangle}}{k!}$

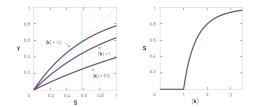
network degree distribution

- *scale-free* $p_k \sim k^{-\gamma}$ of real networks [Bar16]
- real networks are not random graphs [ER59]
- random graphs *lack hubs* with $k \gg \langle k \rangle$



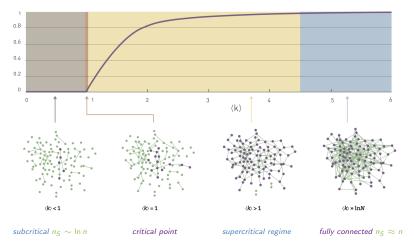
graph connectivity

- fraction of nodes in giant component S for $n \gg \langle k \rangle$ $\ln(1-S) = (n-1)\ln(1-pS) \simeq -(n-1)pS = -(n-1)\frac{\langle k \rangle}{n-1}S = -\langle k \rangle S$ $1-S = (1-p+p(1-S))^{n-1} \qquad S = 1-e^{-\langle k \rangle S}$



- emergence of giant component or phase transition at $\langle k \rangle = 1$ $\frac{d}{dS}(1 - e^{-\langle k \rangle S})\Big|_{S=0} = \langle k \rangle e^{-\langle k \rangle S}\Big|_{S=0} = \langle k \rangle > 1$

graph evolution



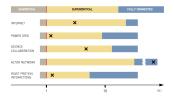
see random graph evolution $\ensuremath{\mathsf{NetLogo}}$ demo

network connectivity

— *connectivity* of real networks [Bar16]

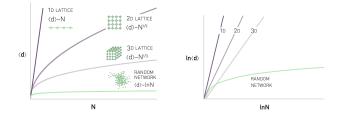
— networks *supercritical* with $1 < \langle k \rangle < \ln n$

NETWORK	Ν	L	$\langle k \rangle$	InN	
Internet	192,244	609,066	6.34	12.17	
Power Grid	4.941	6,594	2.67	8.51	
Science Collaboration	23,133	94.439	8.08		
Actor Network	702,388	29,397,908	83.71	13.46	
Protein Interactions	2,018	2,930	2.90	7.61	



— Facebook friendships [BBR+12] connected S > 0.997

graph diameter & distance



network diameter & distance

- diameter d_{max} and distance $\langle d \rangle$ of real networks [Bar16] - $\langle d \rangle$ well estimated by $\frac{\ln n}{\ln \langle k \rangle}$ whereas $d_{max} \gg \frac{\ln n}{\ln \langle k \rangle}$

NETWORK		L	$\langle k \rangle$	$\langle d \rangle$	d _{max}	lnN
	N					$\ln\langle k \rangle$
Internet	192,244	609,066	6.34	6.98	26	6.58
WWW	325,729	1,497,134	4.60	11.27	93	8.31
Power Grid	4,941	6,594	2.67	18.99	46	8.66
Mobile Phone Calls	36,595	91,826	2.51	11.72	39	11.42
Email	57,194	103,731	1.81	5.88	18	18.4
Science Collaboration		93,439	8.08	5-35	15	4.81
Actor Network	702,388	29,397,908	83,71	3,91	14	3.04
Citation Network	449,673	4,707,958	10.43	11,21	42	5.55
E. Coli Metabolism	1,039	5,802	5.58	2.98	8	4.04
Protein Interactions	2,018	2,930	2.90	5.61	14	7.14

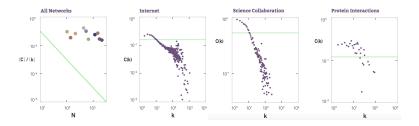
graph clustering

- clustering coefficients $\langle C \rangle$ [WS98] and C [NSW01] $C = \langle C \rangle = \langle C_i \rangle = \frac{\langle t_i \rangle}{\binom{k_i}{2}} = \frac{p\binom{k_i}{2}}{\binom{k_i}{2}} = p$

-- $\langle C \rangle = 0.61$ for *Facebook* social circles [NL12] while $\rho < 10^{-6}$ -- random graphs *lack clustering* for $n \gg \langle k \rangle$ opposed to *lattices*

network *clustering*

- clustering $\langle C \rangle$ and C(k) of real networks [Bar16]
- *C* is *under-/overestimated* for *low-/high-k* nodes
- random graphs substantially underestimate $\langle C \rangle$



graph references

A.-L. Barabási.

Network Science

Cambridge University Press, Cambridge, 2016.

Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna.

Four degrees of separation.

In Proceedings of the ACM International Conference on Web Science, pages 45–54, Evanston, IL, USA, 2012.

Wouter de Nooy, Andrej Mrvar, and Vladimir Batagelj.

Exploratory Social Network Analysis with Pajek: Expanded and Revised Second Edition. Cambridge University Press, Cambridge, 2011.

David Easley and Jon Kleinberg.

Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge, 2010.

Ernesto Estrada and Philip A. Knight.

A First Course in Network Theory. Oxford University Press, 2015.

P. Erdős and A. Rényi.

On random graphs I. Publ. Math. Debrecen, 6:290–297, 1959.

Mark E. J. Newman.

Networks. Oxford University Press, Oxford, 2nd edition, 2018.

Azree Nazri and Pietro Lio.

Investigating meta-approaches for reconstructing gene networks in a mammalian cellular context. PLoS ONE, 7(1):e28713, 2012.

graph references

M. E. J. Newman, S. H. Strogatz, and D. J. Watts.

Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E, 64(2):026118, 2001.

Ray Solomonoff and Anatol Rapoport. Connectivity of random nets.

Bulletin of Mathematical Biophysics, 13(2):107-117, 1951.

D. J. Watts and S. H. Strogatz.

Collective dynamics of 'small-world' networks. *Nature*, 393(6684):440–442, 1998.