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graph models

— graph model is ensemble of random graphs

— algorithm for random graphs of given parameters

– baseline for network structure statistics
– for reasoning about network evolution
– for generating new large graphs

— random graph refers to Erdős-Rényi model [ER59]

assume undirected G from now on

Pál Erdős Alfréd Rényi Erdős-Rényi model
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graph G (n,m) model

— G (n,m) random graph model [ER59]

— randomly place m links between
(n
2

)
node pairs

— computationally convenient but analytically hard

n,m given ⟨k⟩ = 2m/n

input parameters n, m
output graph G

1: G ← n isolated nodes
2: while not G has m links do
3: add link btw random node pair

4: return G
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graph G (n, p) model

— G (n, p) random graph model [SR51]

— place links between
(n
2

)
node pairs with probability p

— computationally hard but analytically convenient

n, p given m, ⟨k⟩ unknown

input parameters n, p
output graph G

1: G ← n isolated nodes
2: for all

(n
2

)
node pairs in G do

3: add link with probability p

4: return G
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graph density & degree

— number of links m follows binomial distribution B(
(n
2

)
, p)

x ∼ B(n, p) then px =
(n
x

)
px(1− p)n−x and ⟨x⟩ = np

⟨m⟩ =
(n2)∑
m=0

mP(m) =

(n2)∑
m=0

m

((n
2

)
m

)
pm(1− p)(

n
2)−m =

(
n

2

)
p

— then density ρ = p and average degree ⟨k⟩ = (n − 1)p
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graph degree distribution

— degree distribution pk is also binomial distribution B(n − 1 , p)

x ∼ B(n, p) then px =
(n
x

)
px(1− p)n−x and ⟨x⟩ = np

pk =

(
n − 1

k

)
pk(1− p)n−1−k

— pk approximately Poisson distribution Pois(⟨k⟩) for n ≫ ⟨k⟩
x ∼ Pois(λ) then px = λxe−λ

x! and ⟨x⟩ = λ

ln
[
(1− p)n−1−k

]
= (n − 1− k) ln

(
1− ⟨k⟩

n−1

)
≃ −(n − 1− k) ⟨k⟩

n−1
≃ −⟨k⟩

pk ≃ (n − 1)k

k!

(
⟨k⟩
n − 1

)k

e−⟨k⟩ =
⟨k⟩ke−⟨k⟩

k!
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network degree distribution

— scale-free pk ∼ k−γ of real networks [Bar16]

— real networks are not random graphs [ER59]

— random graphs lack hubs with k ≫ ⟨k⟩
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graph connectivity

— fraction of nodes in giant component S for n ≫ ⟨k⟩
ln(1− S) = (n − 1) ln (1− pS) ≃ −(n − 1)pS = −(n − 1) ⟨k⟩

n−1
S = −⟨k⟩S

1− S = (1− p + p(1− S))n−1 S = 1 − e−⟨k⟩S

— emergence of giant component or phase transition at ⟨k⟩ = 1
d
dS

(1− e−⟨k⟩S)
∣∣∣
S=0

= ⟨k⟩e−⟨k⟩S
∣∣∣
S=0

= ⟨k⟩ > 1
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graph evolution

subcritical nS ∼ ln n critical point supercritical regime fully connected nS ≈ n

see random graph evolution NetLogo demo
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https://ccl.northwestern.edu/netlogo/


network connectivity

— connectivity of real networks [Bar16]

— networks supercritical with 1 < ⟨k⟩ < ln n

— Facebook friendships [BBR+12] connected S > 0.997
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graph diameter & distance

— diameter dmax and average distance ⟨d⟩ for n ≫ ⟨k⟩
1 + ⟨k⟩+ ⟨k⟩2 + · · ·+ ⟨k⟩dmax = ⟨k⟩dmax+1−1

⟨k⟩−1
≈ ⟨k⟩dmax ≃ n

dmax ≃ ln n

ln⟨k⟩
⟨d⟩ ≈ ln n

ln⟨k⟩

— ⟨d⟩ = 4.74 for Facebook [BBR+12] while ln n
ln⟨k⟩ = 3.98

— random graphs short distances opposed to lattices
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network diameter & distance

— diameter dmax and distance ⟨d⟩ of real networks [Bar16]
— ⟨d⟩ well estimated by ln n

ln⟨k⟩ whereas dmax≫ ln n
ln⟨k⟩
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graph clustering

— clustering coefficients ⟨C ⟩ [WS98] and C [NSW01]

C = ⟨C ⟩ = ⟨Ci ⟩ = ⟨ti ⟩
(ki2)

=
p(ki2)
(ki2)

= p

— ⟨C ⟩ = 0.61 for Facebook social circles [NL12] while ρ < 10−6

— random graphs lack clustering for n ≫ ⟨k⟩ opposed to lattices
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network clustering

— clustering ⟨C ⟩ and C (k) of real networks [Bar16]

— C is under-/overestimated for low-/high-k nodes

— random graphs substantially underestimate ⟨C ⟩
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