intermediacy of publications

uncovering important publications for the development of a field

Lovro Subelj
University of Ljubljana
Faculty of Computer and
Information Science

Ludo Waltman Vincent Traag Nees Jan van Eck
Leiden University Leiden University Leiden University
Centre for Science and Centre for Science and Centre for Science and
Technology Studies Technology Studies Technology Studies
COSTNET 20

work resulting from my STSM at Leiden University funded by COSTNET

1/18



problem & motivation

algorithmic historiography for evolution of field (Garfield, 1964-)

relying on citations between publications from WoS /Scopus
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existing approaches include main paths (Hummon & Doreian, 1989)
(longest/shortest paths) many irrelevant/miss relevant publications

(however) important publications should only be well-connected

", .. citations are valid and valuable means of creating accurate historical descriptions of scientific fields.”
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measure of intermediacy

(setting) select source & target publications s & t
(method) each citation is active/relevant with probability p

(result) importance of publication u as intermediacy ¢,

¢y = Pr(X4) = Pr(Xey) Pr(Xue)

s

N

X — exists path from s to t & X!, — exists such path through u

¢y = 2¢, #Z publication u is “twice” as important as publication v
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limit case p — 0

for p — 0 intermediacy ¢ governed by / (proof)

forp—0if ¢, </, then ¢, > ¢,

/i
<

u > o ¢u < v

forp - 0 forp—)l

{, — length of shortest paths from s to t through u
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limit case p — 1

for p — 1 intermediacy ¢ governed by o (proof)

for p = 1if o, < o, then ¢, < ¢,

/i
<

u > o ¢u < v

forp - 0 for p—1
o, — number of edge-disjoint paths from s to t through u
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intuition for parameter p

for what p is direct citation = k indirect citations

Pr(Xpw)=p=1-(1- Pz)k
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Pr(Xw) =1— (1 — pA)¥ indirect paths k

k — number of indirect paths from v to v

p=02=k=5&p=0.11= k=10
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choice of parameter p

for what p source-target path Pr(Xs) > 0 = intermediacy Ju : ¢, > 0

p>n/2m=1/k
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source-target path probability Pr( XS')
o
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k — average number of citations & references

percolation theory suggests that for k > 1 probability Pr(Xs;) is non-negligible
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properties of intermediacy

path addition & contraction increase intermediacy (proof)
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original graph path addition path contraction

path from source to target becomes “easier” (intuition)
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alternatives to intermediacy

alternatives include main paths & resistance (state of the art)

0.67 2
o ,,
. 0.72 0.72

oi’(;b « p>-

intermediacy main path analysis expected path count

alternatives violate path addition/contraction property (examples)
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exact algorithm

decomposition algorithm by edge contraction & removal (Ball, 1979)

Pr(Xst | G) = pPr(Xet | G/(s,u)) + (1 — p) Pr(Xst | G — (s, 1))

b/;] Q/t}? : 0}1
graph G contraction G/(s, u) removal G —

runs in exponential time since NP-hard even in DAG (Johnson, 1984)

decomposition algorithm is cute & elegant, but useless in practice :(
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approximate algorithm

simple Monte Carlo simulation algorithm by edge sampling

N

¢y = Pr(X, t|G Z t|Hk)

Hi Hs Hs
0.41
" 0.61
,
1 -
é:)‘/p — N + + + ... =
.
0.54

graph G N samples intermediacy ¢

runs in linear time using probabilistic DFS over say 10 samples

< 30 min for network with 9145 771 nodes and 81 771 723 edges :)
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intermediacy # centrality

correlation between intermediacies & citations/references
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intermediacy not correlated with standard centrality measures

intermediacy most useful from ordinal perspective = Pearson < Spearman correlation
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modularity example

( ) Newman & Girvan (2004),

, Phys. Rev. E 69(2), 026113.

(source) Klavans & Boyack (2017), Which type of citation analysis generates. .., JASIST 68(4), 984-998.

10

Waltman & Van Eck (2013), A smart local moving algorithm for large-
scale modularity-based community detection, EPJB 86, 471.

Waltman & Van Eck (2012), A new methodology for constructing a
publication-level classification system. .., JASIST 63(12), 2378-2392.
Hric et al. (2014), Community detection in networks: Structural com-
munities versus ground truth, Phys. Rev. E 90(6), 062805.

Fortunato (2010), Community detection in graphs, Phys. Rep. 486(3-
5), 75-174.

Newman (2006), Modularity and community structure in networks,
PNAS 103(23), 8577-8582.

Ruiz-Castillo & Waltman (2015), Field-normalized citation impact in-
dicators using algorithmically. .., J. Informetr. 9(1), 102-117.

Blondel et al. (2008), Fast unfolding of communities in large networks,
J. Stat. Mech., P10008.

Newman (2006), Finding community structure in networks using the
eigenvectors of matrices, Phys. Rev. E 74(3), 036104.

Newman (2004), Fast algorithm for detecting community structure in
networks, Phys. Rev. E 69(6), 066133.

Rosvall & Bergstrom (2008), Maps of random walks on complex net-
works reveal community structure, PNAS 105(4), 1118-1123.

we set p = 0.1 & use in-house version of database at CWTS
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peer review example

(target) Cole & Cole (1967), Scientific output and recognition, Am. Sociol. Rev. 32(3), 377-390.

(SOI.II’CE) Garcia et al. (2015), The author-editor game, Scientometrics 104(1), 361-380.

Lee et al. (2013), Bias in peer review, JASIST 64(1), 2-17.
Zuckerman & Merton (1971), Patterns of evaluation in science: Insti-
tutionalisation, structure and functions. .., Minerva 9(1), 66-100.
Campanario (1998), Peer review for journals as it stands today: Part
1, Sci. Commun. 19(3), 181-211.

Crane (1967), The gatekeepers of science: Some factors affecting the
selection of articles for scientific journals, Am. Sociol. 2(4), 195-201.
Campanario (1998), Peer review for journals as it stands today: Part
2, Sci. Commun. 19(4), 277-306.

Gottfredson (1978), Evaluating psychological research reports: Dimen-
sions, reliability, and correlates. .., Am. Psychol. 33(10), 920-934.
Bornmann (2011), Scientific peer review, Annu. Rev. Inform. Sci.
45(1), 197-245

Bornmann (2012), The Hawthorne effect in journal peer review, Sci-
entometrics 91(3), 857-862.

Bornmann (2014), Do we still need peer review? An argument for
change, JASIST 65(1), 209-213.

Merton (1968), The Matthew effect in science, Science 159(3810),
56-63.

we set p = 0.1 & use snapshot of WoS collected by (Batagelj et al., 2017)
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small-world example

10

( ) Watts & Strogatz (1998),
. Nature 393(6684), 440-442.

(SOUI’CE) Backstrom et al. (2012), Four degrees of separation,
In: Proceedings of the WebSci '12, pp. 45-54.

Newman (2003), The structure and function of complex networks, SIAM Rev. 45(2), 167-256.
Albert & Barabasi (2002), Statistical mechanics of complex networks, Rev. Mod. Phys. T4(1), 47-97.
Li et al. (2005), Towards a theory of scale-free graphs: Definition, properties, and implications, Internet
Math. 2(4), 431-523.

Leskovec et al. (2007), Graph evolution: Densification and shrinking diameters, ACM Trans. Knowl.
Discov. Data 1(1), 1-41.

Liben-Nowell et al. (2005), Geographic routing in social networks, P. Natl. Acad. Sci. USA 102(33),
11623-11628.

Strogatz (2001), Exploring complex networks, Nature 410(6825), 268-276.

Boldi et al. (2011), Layered label propagation: A multiresolution coordinate-free ordering for compress-
ing social networks, In: Proceedings of the WWW 11, pp. 587-596.

Dorogovtsev (2002), Evolution of networks, Adv. Phys. 51(4), 1079-1187.

Ye et al. (2010), Distance distribution and average shortest path length estimation in real-world net-
works, In: Proceedings of the ADMA '10, pp. 322-333.

Lattanzi et al. (2011), Milgram-routing in social networks, In: Proceedings of the WWW 11, pp.
725-734.

we set p = 0.1 & use in-house version of database at CWTS
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scale-free example

( ) Barabisi & Albert (1999),
, Science 286(5439), 509-512.

(source) Liu et al. (2011), Controllability of
complex networks, Nature 473(7346), 167-173.

Albert & Barabasi (2002), Statistical mechanics of complex networks, Rev. Mod. Phys. T4(1), 47-97.
2 Strogatz (2001), Exploring complex networks, Nature 410(6825), 268-276.

Boguiia et al. (2004), Cut-offs and finite size effects in scale-free networks, Eur. Phys. J. B 38(2),
205-209.

4 Nishikawa et al. (2003), Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize?,
Phys. Rev. Lett. 91(1), 014101.

Kim & Motter (2009), Slave nodes and the controllability of metabolic networks, New J. Phys. 11,
113047.

6 Newman (2003), The structure and function of complex networks, SIAM Rev. 45(2), 167-256.
Sorrentino et al. (2007), Controllability of complex networks via pinning, Phys. Rev. E 75(4), 046103.
8 Dorogovtsev (2002), Evolution of networks, Adv. Phys. 51(4), 1079-1187.
Pastor-Satorras et al. (2001), Dynamical and correlation properties of the Internet, Phys. Rev. Lett.
87(25), 258701.
10 Yu et al. (2009), On pinning synchronization of complex dynamical networks, Automatica 45(2), 429-
435.

we set p = 0.1 & use in-house version of database at CWTS
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conclusions & future

(proposal) measure of importance of publications called intermediacy
(theory) conceptually clear & provable behavior in limit cases
(practice) intermediacy shows promising results in case studies

(extensions) multiple sources & targets, weighted networks

(future) online app! other networks, axiomatic foundation etc.
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(paper) arxiv.org/abs/1812.08259
(code) github.com/lovre/intermediacy

gubelj, Waltman, Traag & Van Eck (2020) Intermediacy of publications, Royal Society Open Science, 7(1), 190207.
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