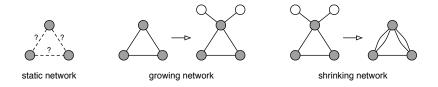
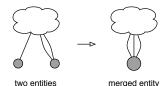
war pact network model: generative model of networks that shrink


Lovro Šubelj University of Ljubljana Faculty of Computer and joint work with

Luka Naglić University of Zagreb Faculty of Science

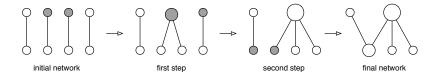
EUSN '19

network models


(soa) network models as baseline, explanation & generation
 (existing) majority for static or growing networks [ER59, Pri76]
 (missing) generative models of shrinking networks [KNB08]

[ER59] Erdős & Rényi (1959) On random graphs I. Publ. Math. Debrecen 6, 290-297.
 [Pri76] Price (1976) A general theory of bibliometric and other cumulative. . . J. Am. Soc. Inf. Sci. 27(5), 292-306.
 [KNB08] Kejžar et al. (2008) Probabilistic inductive classes of graphs. J. Math. Sociol. 32(2), 85-109.

shrinking models

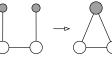

(intuition) entities/nodes often merge in real world/network (which) merged nodes/entities are random, hubs, isolates etc.

(wars) nations/alliances form pact or one occupies other •
 (trade) countries form alliance or companies after merger
 (Bitcoin) cryptocurrency addresses owned by same user
 (Internet) autonomous systems merge their traffic

war pact model

(model) shrinking network with n nodes & m edges

(initialize) create perfect matching on 2m nodes
 (select) select nodes at random, preferentially etc.
 (shrink) merge nodes by rewiring their edges
 (loop) continue until network has n nodes


model **details**

(shrink) merging nodes at distance d creates d-cycle

edge with d = 1 self-edge

-edge p

path of length d = 2 parallel edges

path of length d = 3

triangle

(model) war pact is parameter-free except *n* nodes & *m* edges (initialize) create perfect matching, random graph or tree \circ (select) select nodes at random, by degree or degree⁻¹ •

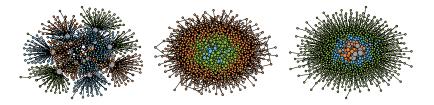
model pseudocode

```
input nodes n & edges m output graph G
```

- 1: $H \leftarrow empty map$
- 2: $G \leftarrow empty graph$
- 3: for $i \in [1, m]$ do
- $4: \qquad H(i) \leftarrow i \& H(m+i) \leftarrow m+i$
- 5: add nodes H(i) & H(m+i) to G
- 6: add edge $\{H(i), H(m+i)\}$ to G
- 7: while G has > n nodes do
- 8: $h \leftarrow random(H)$
- 9: $i \leftarrow random([1, 2m])$
- 10: if $h \neq H(i)$ & edge $\{h, H(i)\} \notin G$ then
- 11: merge nodes h & H(i) in G12: $H(i) \leftarrow h$

13: return G

map of nodes' hashesempty war pact graph

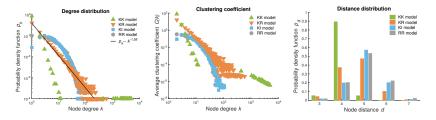

map nodes to hashes
 add nodes to graph
 add edges to graph

select random nodeselect node by degree

merge selected nodesunify nodes' hashes

model networks

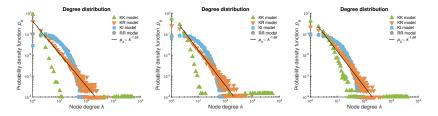
(layout) node selection impacts (modular) structure [Pei18]



(left) both nodes are selected by degree
(middle) nodes selected by degree & degree⁻¹
(right) nodes selected by degree & at random

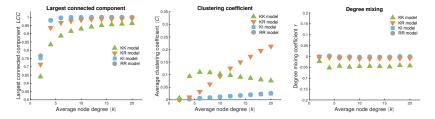
[Pei18] Peixoto (2018) Bayesian stochastic blockmodeling. e-print arXiv:1705.10225v7, 1-44.

model selection


(structure) node selection impacts scale-free/small-world

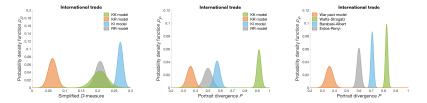
(KK model) both are nodes selected by degree
 (KR model) nodes selected by degree & at random
 (KI model) nodes selected by degree & degree⁻¹
 (RR model) both nodes are selected at random

model initialization


(structure) model initialization has no apparent impact

(left) networks initialized by perfect matching(middle) networks initialized by random graph(right) networks initialized by random tree

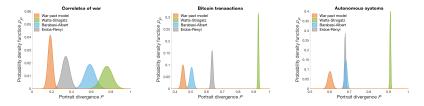
model evolution


(structure) model evolution when increasing node degree $\langle k \rangle$

(left) emergence of giant component LCC when increasing (k)
 (middle) increasing node clustering (C) when increasing (k)
 (right) "fixed" degree mixing r when changing (k)

model comparison

(network) international trade (i.e. food import & export) (models) war pact \gg small-world, scale-free & random graphs



(left) simplified D-measure [SCDPMR17] (right) portrait divergence P [BB19]

[SCDPMR17] Schieber et al. (2017) Quantification of network structural dissimilarities. Nat. Commun. 8, 13928.
 [BB19] Bagrow & Bollt (2019) An information-theoretic, all-scales approach to comparing. . . Appl. Netw. Sci. 4, 45.

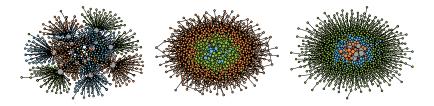
model validation

(networks) national wars, Bitcoin transactions & Internet map (models) war pact ≫ small-world, scale-free & random graphs

(measure) portrait divergence P [BB19]

[BB19] Bagrow & Bollt (2019) An information-theoretic, all-scales approach to comparing. . . Appl. Netw. Sci. 4, 45.

model structure


(size) model reproduces nodes n & edges m by design (connectivity) model well reproduces giant component *LCC* (distance) model well reproduces distance $\langle d \rangle \&$ diameter d_{max}

	n	т	$\langle k \rangle$	LCC	$\langle C \rangle$	$\langle d \rangle$	d _{max}
Correlates of war	41	54	2.63	87.8%	0.28	2.58	8
	41	54	2.63	90.2%	0.06	2.64	7
International trade	130	3 7 3 0	57.38	100.0%	0.50	2.24	5
	130	3 7 3 0	57.38	100.0%	0.53	2.17	5
Bitcoin transactions	1 288	6 2 3 6	9.68	98.8%	0.33	2.83	9
	1 288	6 236	9.68	98.0%	0.13	3.08	7
Autonomous systems	3213	11 248	7.00	100.0%	0.18	3.77	9
	3 2 1 3	11 248	7.00	98.3%	0.03	3.62	9

(clustering) model often underestimates node clustering $\langle C \rangle$

model conclusions

(novel) simple model of networks that shrink
 (others) in contrast to classic static & growing models
 (networks) model well reproduces structure except clustering

(question) growing or shrinking models more "reasonable"?(future) combined model, other networks & analytical results

thank you!

arXiv:1909.00745v1

Naglić & Šubelj (2019) War pact model of shrinking networks. PLoS ONE, under review.

Lovro Šubelj University of Ljubljana

lovro.subelj@fri.uni-lj.si
http://lovro.lpt.fri.uni-lj.si

joint work with

Luka Naglić University of Zagreb

lu.naglic@gmail.com
http://www.pmf.unizg.hr