
PHYSICAL REVIEW E 83, 036103 (2011)

Unfolding communities in large complex networks: Combining defensive and offensive label
propagation for core extraction

Lovro Šubelj* and Marko Bajec†

University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia
(Received 1 June 2010; revised manuscript received 6 November 2010; published 8 March 2011)

Label propagation has proven to be a fast method for detecting communities in large complex networks. Recent
developments have also improved the accuracy of the approach; however, a general algorithm is still an open issue.
We present an advanced label propagation algorithm that combines two unique strategies of community formation,
namely, defensive preservation and offensive expansion of communities. The two strategies are combined in a
hierarchical manner to recursively extract the core of the network and to identify whisker communities. The
algorithm was evaluated on two classes of benchmark networks with planted partition and on 23 real-world
networks ranging from networks with tens of nodes to networks with several tens of millions of edges. It is shown
to be comparable to the current state-of-the-art community detection algorithms and superior to all previous
label propagation algorithms, with comparable time complexity. In particular, analysis on real-world networks
has proven that the algorithm has almost linear complexity, O(m1.19), and scales even better than the basic label
propagation algorithm (m is the number of edges in the network).

DOI: 10.1103/PhysRevE.83.036103 PACS number(s): 89.75.Fb, 89.75.Hc, 87.23.Ge, 89.20.Hh

I. INTRODUCTION

Large real-world networks can comprise local structural
modules (communities) that are groups of nodes, densely
connected within and only loosely connected with the rest
of the network. Communities are believed to play important
roles in different real-world systems (e.g., they may correspond
to functional modules in metabolic networks [1]); moreover,
they also provide a valuable insight into the structure and
function of large complex networks [1–3]. Nevertheless, real-
world networks can reveal even more complex modules than
communities [4,5].

Over the last decade the research community has shown a
considerable interest in detecting communities in real-world
networks. Since the seminal paper of Girvan and Newman [6]
a vast number of approaches have been presented in the
literature—in particular, approaches optimizing modularity
Q (the significance of communities due to a selected null
model [7]) [8–12], graph partitioning [13,14] and spectral
algorithms [9,15], statistical methods [4], algorithms based
on dynamic processes [16–20], overlapping, hierarchical, and
multiresolution methods [1,6,20], and others [21] (for an
excellent survey see [22]).

The size of large real-world networks has forced the
research community to develop scalable approaches that can
be applied to networks with several millions of nodes and
billions of edges. A promising effort was made by Raghavan
et al. [18], who employed a simple label propagation to find
significant communities in large real-world networks. Tibély
and Kertész [23] have shown that label propagation is in fact
equivalent to a large zero-temperature kinetic Potts model,
while Barber and Clark [11] have further refined the approach
into a modularity optimization algorithm. Just recently, Liu
and Murata [12] have combined the modularity optimization

*lovro.subelj@fri.uni-lj.si
†marko.bajec@fri.uni-lj.si

version of the algorithm with a multistep greedy agglomeration
[24] and derived an extremely accurate community detection
algorithm.

Leung et al. [19] have investigated label propagation
on large web networks, mainly focusing on scalability is-
sues, and have shown that the performance can be signifi-
cantly improved with label hop attenuation and by applying
node preference (i.e., node propagation strength). We carry
forward their work in developing two unique strategies
of community formation, namely, defensive preservation
of communities, where preference is given to the nodes
in the core of each community, and offensive expansion
of communities, where preference is given to the border
nodes of each community. Cores and borders are estimated
using random walks, formulating the diffusion over the
network.

Furthermore, we propose an advanced label propagation
algorithm—the diffusion and propagation algorithm—that
combines the two strategies in a hierarchical manner: The
algorithm first extracts the core of the network and identifies
whisker communities [26] (Appendix A), and then recurses on
the network core (Fig. 1). The performance of the algorithm
has been analyzed on two classes of benchmark networks with
planted partition and on 23 real-world networks ranging from
networks with tens of nodes to networks with several tens of
millions of edges. The algorithm is shown to be comparable to
the current state-of-the-art community detection algorithms
and superior to all previous label propagation algorithms,
with comparable time complexity. In particular, the algorithm
exhibits almost linear time complexity (in the number of edges
of the network).

The rest of the paper is structured as follows. Sec-
tion II gives a formal introduction to label propagation
and reviews subsequent advances, relevant for this research.
Section III presents the diffusion and propagation algorithm
and discusses the main rationale behind it. Empirical eval-
uation with discussion is done in Secs. IV, and V is our
conclusion.

036103-11539-3755/2011/83(3)/036103(12) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.036103

LOVRO ŠUBELJ AND MARKO BAJEC PHYSICAL REVIEW E 83, 036103 (2011)

FIG. 1. (Color online) Results of diffusion and propagation
algorithm applied to the network of autonomous systems of the
Internet [25]. The figure shows two community networks, where
the largest nodes correspond to densely connected modules of almost
104 nodes in the original network. Network cores, extracted by the
algorithm, are colored red (dark gray) and whisker communities
are represented with transparent nodes. The results show that
the algorithm can detect communities on various levels of
resolution—average community sizes are 16.38 and 588.79 nodes
(with Q equal to 0.475 and 0.582, respectively).

II. LABEL PROPAGATION AND ADVANCES

Let the network be represented by an undirected graph
G(N,E), with N being the set of nodes of the graph and E

being the set of edges. Furthermore, let cn be a community
(label) of node n, n ∈ N , and N (n) the set of its neighbors.

The basic label propagation algorithm (LPA) [18] exploits
the following simple procedure. At first, each node is labeled
with a unique label, cn = ln. Then, at each iteration, the node
is assigned the label shared by most of its neighbors (i.e., the
maximal label),

cn = argmax
l

|N l(n)|, (1)

whereN l(n) is the set of neighbors of n that share label l (in the
case of ties, one maximal label is chosen at random). Due to the
existence of multiple edges within the communities, relative
to the number of edges between the communities, nodes in a
community will adopt the same label after a few iterations. The
algorithm converges when none of the labels changes anymore
(i.e., equilibrium is reached) and nodes sharing the same label
are classified into the same community.

The main advantage of label propagation is its nearly linear
time complexity—the algorithm commonly converges in less
then 10 iterations (on networks of moderate size). Raghavan
et al. [18] observed that after 5 iterations 95% of the nodes
already obtained their “right” label. Their observation can be
further generalized: The number of nodes that change their
label on the first 4 iterations roughly follow the sequence
90%, 30%, 10%, and 5%. However, because of the algorithm’s
simplicity, the accuracy of identified communities is often not
state of the art (Sec. IV).

Leung et al. [19] have noticed that the algorithm, applied to
large web networks, often produces a single large community,
occupying more than a half of the nodes of the network.
Thus, they have proposed a label hop attenuation technique, to
prevent the label from spreading too far from its origin. Each

label ln has associated an additional score sn (initially set to 1)
that decreases after each propagation [Eq. (1)]. Hence,

sn =
(

max
i∈N cn (n)

si

)
− δ, (2)

with δ being the attenuation ratio. When sn reaches 0, the label
can no longer propagate onward [Eq. (3)], which successfully
eliminates the formation of a single major community [19].

Leung et al. [19] have also shown that hop attenuation has
to be coupled with node preference fn (i.e., node propagation
strength) in order to achieve superior performance. The label
propagation updating rule [Eq. (1)] is thus reformulated into

cn = argmax
l

∑
i∈N l (n)

f α
i siwni, (3)

where wni is the edge weight (equal to 1 for unweighted
graphs) and α is a parameter of the algorithm. They have
experimented with preference equal to the degree of the
node, fi = ki and α = 0.1; however, no general approach was
reported.

Label hop attenuation in Eq. (2) can be rewritten into an
equivalent form that allows altering δ during the course of the
algorithm [19]. One keeps the label distance from the origin
dn (initially set to 0) that is updated after each propagation.
Hence,

dn = (min
i∈N cn (n)

di) + 1, (4)

when the score sn is

sn = 1 − δdn. (5)

Raghavan et al. [18] have already shown that the updat-
ing rule of label propagation [Eq. (1)], or its refinements
[Eq. (3)], might prevent the algorithm from converging.
Imagine a bipartite network with two sets of nodes, i.e., red
and blue nodes. Let, at some iteration of the algorithm, all red
nodes share label lr and all blue nodes share label lb. Because
of the bipartite structure of the network, at the next iteration, all
red and blue nodes will adopt the label lb and lr , respectively.
Furthermore, at the next iteration all nodes will recover their
original labels, preventing the algorithm from converging.

The problem can be avoided with asynchronous updating
[18]. Nodes are no longer updated all together, but sequentially,
in random order. Thus, when a node’s label is updated, (pos-
sibly) already updated labels of its neighbors are considered
(in contrast to synchronous updating, which considers only
labels from the previous iteration). It should be noted that
asynchronous updating can even increase the performance of
the algorithm [19].

Furthermore, when a node has equally strong connections
with two or more communities, its label will, in general, con-
stantly change [18,19]. The problem is particularly apparent in
author collaboration (co-authorship) networks, where a single
author often collaborates with different research communities.
On the collaboration network of network scientists [9] the
basic label propagation algorithm fails to converge, as up to
10% of the nodes would change their label even after 10 000
iterations; the results suggest that the network contains at least
20% of such nodes, i.e., over 300 scientists collaborating with
different research communities [28].

036103-2

UNFOLDING COMMUNITIES IN LARGE COMPLEX . . . PHYSICAL REVIEW E 83, 036103 (2011)

FIG. 2. Comparison of node access strategies for label propaga-
tion on two sets of benchmark networks with planted partition [27]
(the results are averages over 100 realizations). Network sizes equal
500 and 1000 nodes, and communities comprise up to 50 and
100 nodes, respectively. LPA denotes the basic label propagation
algorithm and LPAS denotes LPA without (subsequent) reshuffling
of nodes.

Leung et al. [19] suggested including the concerned label
itself in the maximal label consideration (and not merely
neighbors’ labels); however, we use a slightly modified version
[18]. When there are multiple maximal labels among neighbors
and one of them equals the concerned label, the node retains
its label. The main difference here is that the modified
version considers the concerned label only when there exist
multiple maximal labels among neighbors. On the discussed
collaboration network, such an algorithm converges in around
4 iterations.

Never-converging nodes can also be regarded as a clear
signature of overlapping communities [1], where nodes can be-
long to multiple communities. Extension of label propagation
to detect overlapping communities was recently proposed by
Gregory [29] (and previously discussed in [18,19]). However,
due to simplicity, we investigate only basic (no-overlap)
versions of the label propagation algorithm.

Another important issue of label propagation is the stability
of identified community structure [18], especially in large
networks. For more detailed discussion see [12,18,23].

Label propagation with asynchronous updating accesses the
nodes in a random order. Nodes are then shuffled after each
iteration, mainly to address the problems discussed above.
Although this subsequent reshuffling does not increase the al-
gorithm’s complexity, it does indeed increase its computational
time. Nevertheless, the results in Fig. 2 show that LPA without
subsequent reshuffling of nodes (LPAS) only slightly decreases
the performance of the basic LPA. Thus, all the approaches
presented in the following section use asynchronous updating
with a single (initial) shuffling of nodes.

III. DIFFUSION AND PROPAGATION ALGORITHM

The section presents the diffusion and propagation algo-
rithm that combines several approaches, also introduced in
this section. We thus give here a brief review of these.

First, we further analyze label hop attenuation for LPA
(Sec. II) and propose different dynamic hop attenuation
strategies in Sec. III A. Next, we consider various approaches
for node propagation preference (Sec. II). By estimating node
preference by means of the diffusion over the network, we

derive two algorithms that result in two unique strategies
of community formation, namely, defensive preservation and
offensive expansion of communities. The algorithms are
denoted defensive and offensive diffusion and attenuation LPA
(DDALPA and ODALPA) and are presented in Sec. III B.

The DALPA algorithms are combined into the basic
diffusion and propagation algorithm (BDPA), preserving
the advantages of both defensive and offensive approaches
(Sec. III C). BDPA already achieves superior results on net-
works of moderate size (Sec. IV); for use with larger networks,
the algorithm is further enhanced with core extraction and
whiskers identification. The improved algorithm is denoted
the (general) diffusion and propagation algorithm (DPA) and
is presented in Sec. III C.

A. Dynamic hop attenuation

Hop attenuation has proven to be a reliable technique for
preventing the emergence of a major community occupying
most of the nodes of the network [19]. It is, however, not
evident what the value of attenuation ratio δ should be
[Eq. (2)]. Leung et al. [19] have experimented with values
around 0.10 and obtained good results; still, their experimental
setting was rather limited. Furthermore, our preliminary
empirical analysis suggests that there is no (simple) universal
value for δ applicable for all different types of networks (the
results are omitted here).

Leung et al. [19] have also observed that large values of δ

may prevent the natural growth of communities and have pro-
posed a dynamic strategy that decreases δ from 0.50 toward 0.
In the early iterations of the algorithm, large values of δ prevent
a single label from rapidly occupying a large set of nodes
and ensure the emergence of a number of strong community
cores. The value of δ is then decreased, to gradually relax the
restriction and to allow formation of the actual communities
depicted in the network topology. The results on real-world
networks show that such a strategy has very good performance
on larger networks (Sec. IV); still, the results can be further
improved. The empirical evaluation in Sec. IV also proves that
the strategy is too aggressive for smaller networks, where it is
commonly outperformed even by basic LPA.

We propose different dynamic hop attenuation strategies,
based on the hypothesis that hop attenuation should only be
employed when a community, or a set of communities, is
rapidly occupying a large portion of the network. Otherwise,
the restriction should be (almost) completely relaxed, to allow
label propagation to reach the equilibrium unrestrained. Thus,
the approach would retain the dynamics of label propagation
and still prevent the emergence of a major community.

We have considered several strategies for detecting the
emergence of a large community or a set of large communities.
Because of limited space, we limit the discussion to two. After
each iteration, the value of δ (initially set to 0) is updated
according to the following rule:

nodes: δ is set to the proportion of nodes that changed their
label;

communities: δ is set to the proportion of communities (i.e.,
labels) that disappeared.

Both strategies successfully address the problem of major
community formation; however, a detailed comparison is

036103-3

LOVRO ŠUBELJ AND MARKO BAJEC PHYSICAL REVIEW E 83, 036103 (2011)

omitted here. The algorithms proposed here all use the nodes
strategy, because of its much finer granularity, as opposed to
the communities approach—after 4 iterations the number of
communities is, in general, already 20 times smaller than the
number of nodes (Sec. II); thus, the estimate of δ is rather rough
for the communities strategy. For the empirical evaluation see
Sec. IV.

B. Defensive and offensive propagation

Leung et al. [19] have proved that using node preference,
to increase the propagation strength (i.e., label spread) from
certain nodes, can improve the performance of basic LPA.
We conducted several experiments by using variations of
different measures of node centrality for node propagation
preference (i.e., degree and eigenvector centrality [30,31]
and node clustering coefficient [32]). The results are omitted
here; however, they clearly indicate that none of these static
measures applies for all different types of networks (i.e.,
general networks).

We have also observed that good performance can be
obtained by putting higher preference to the core of each
community (i.e., to its most central nodes). For instance,
on the Zachary’s karate club network [33], where three
high-degree nodes reside in the core of the two (natural)
communities, degree and eigenvector centralities are superior.
However, on Girvan and Newman [6] benchmark networks,
where all the nodes have equal degree (on average), the
measures are rendered useless and are outperformed by the
node clustering coefficient. On the Lancichinetti et al. [27]
benchmark networks, the best performance is, interestingly,
obtained by inverted degree or eigenvector centrality. The
measures seem to counter each node’s degree (low-degree
nodes have high propagation strength, and vice versa); thus, the
propagation utilizes merely the connectedness among nodes,
disregarding its strength.

Based (also) on the above observations, we have developed
two algorithms that estimate node preference by means of
the diffusion over the network. During the course of the
algorithms, the diffusion is formulated using a random walker
within each of the (current) communities of the network. The
rationale here is twofold: (1) to estimate the (label) propagation
within each of the (current) communities [34], and (2) to
derive an estimation of the core and border of each (current)
community (with the core being the most central nodes of the
community and the border being its edge nodes).

Let pn be the probability that a random walker, utilized
on the community labeled with cn, visits node n. pn can be
computed as

pn =
∑

i∈N cn (n)

pi/k
cn

i , (6)

where the sum goes over all the neighbors of n within the
community cn, and k

cn

i is the intracommunity degree of node
i. The employed formulation is similar to algorithms such as
PageRank [35] and HITS [36], and also to the basic eigenvector
centrality measure.

Finally, we present the two algorithms mentioned above,
namely, defensive and offensive diffusion and attenuation LPA
(DDALPA and ODALPA). The defensive algorithm applies

preference (i.e., propagation strength) to the core of each
community, i.e., f α

n = pn, and the updating rule in (3) is
rewritten as

cn = argmax
l

∑
i∈N l (n)

pisiwni . (7)

On the other hand, the offensive version applies preference
to the border of each community, i.e., f α

n = 1 − pn, and the
updating rule becomes

cn = argmax
l

∑
i∈N l (n)

(1 − pi) siwni . (8)

As opposed to the algorithm of Leung et al. [19], the main
novelty here is in considering (current) communities, found
by the algorithm, to estimate the (current) state of the label
propagation process and then to adequately alter the dynamics
of the process.

To better estimate the border of each community, the
offensive algorithm uses degrees ki (instead of intracommunity
degrees k

cn

i) for the estimation of diffusion values pn [see
Eq. (6)]. The modification results in higher values of 1 − pn

for nodes with large intercommunity degrees (i.e., nodes that
reside in the borders of communities) and thus provides more
adequate formulation of the node propagation strength for the
offensive version (the results are omitted here).

When a node’s label changes, the values pn should be
reestimated for each node in the concerned node’s previous
or current community. However, this would likely render the
algorithm inapplicable on larger networks. Thus, we only
update the value pn [according to Eq. (6)] when the node n

changes its label (initially all pn are set to 1/|N |). Although the
approach is only a rough approximation of an exact version,
preliminary empirical experiments reveal no significant gain
by using the exact values for pn.

Defensive and offensive label propagation algorithms result
in two unique strategies of community formation, namely, de-
fensive preservation and offensive expansion of communities.
The defensive algorithm quickly establishes a larger number
of strong community cores [in the sense of Eq. (7)] and is able
to defensibly preserve them during the course of the algorithm.
This results in an immense ability of detecting communities,
even when they are only weakly defined in the network
topology. On the other hand, the offensive approach produces a
range of communities of various sizes, as commonly observed
in the real-world networks [3,18]. Laying the pressure on the
border of each community expands those that are strongly
defined in the network topology. This constitutes a more
natural (offensive) struggle among the communities and results
in a great accuracy of the communities revealed.

Comparison of the algorithms on two real-world networks
is depicted in Fig. 3. The examples show that defensive propa-
gation prefers networks with rather homogeneous distribution
of the sizes of the communities, and that offensive propagation
favors networks with more heterogeneous (e.g., power law)
distribution. It should, however, be noted that both approaches
can achieve superior performance on both of the networks.
Still, on average, the defensive approach performs better on
the social network football [6], while offensive outperforms
defensive on the metabolic network elegans [37].

036103-4

UNFOLDING COMMUNITIES IN LARGE COMPLEX . . . PHYSICAL REVIEW E 83, 036103 (2011)

FIG. 3. (Color online) Comparison of defensive and offensive
label propagation on two real-world networks, i.e., a social network
of American football matches at a US college [6] and a metabolic
network of the nematode Caenorhabditis elegans [37]. The revealed
communities are shown with pentagonal nodes, and the sizes and
intensities of colors (shadings) of the nodes are proportional to the
sizes of communities. The networks comprise two relatively different
community structures, considering the distribution of sizes of the
communities. This is rather homogeneous in the case of football and
(presumably) a power law in the case of elegans.

For an empirical analysis and further discussion of the
algorithms, see Sec. IV; and for the pseudocode of the
algorithms and discussion on some of the implementation
issues, see Appendix B.

C. Diffusion and propagation algorithm

Defensive and offensive label propagation (Sec. III B)
convey two unique strategies of community formation. An
obvious improvement would be to combine the strategies, thus
retaining the strong detection ability of the defensive approach
and high accuracy of the offensive strategy. However, simply
using the algorithms one after another does not attain the
desired properties. The reason is that any label propagation

algorithm, being run until convergence, finds local optimum
(i.e., local equilibrium) that is hard to escape from.

Raghavan et al. [18] have already discussed the idea
(however, in a different context) that label propagation could
be improved if one had a priori knowledge about community
cores. Core nodes could then be labeled with the same label,
leaving all the other nodes labeled with a unique label. During
the course of the algorithm, the (uniquely labeled) nodes
would tend to adopt the label of their nearest attractor (i.e.,
the community core) and thus join its community. This would
improve the algorithm’s stability [18] and also the accuracy of
the identified communities (Sec. IV).

The defensive and offensive label propagation algorithms
are combined in the following manner. First, the defensive
strategy is applied, to produce initial estimates of the commu-
nities and to accurately detect their cores. All border nodes of
each community are then relabeled (labeled with a unique
label), so that approximately one-half of the nodes retain
their original label. Last, the offensive strategy is applied,
which refines the community cores and accurately detects also
their borders. Such combined strategy preserves advantages
of both defensive and offensive label propagation algorithms
and is denoted the basic diffusion and propagation algorithm
(BDPA). Schematic representation of the algorithm is depicted
in Fig. 4 (steps 3 and 4).

The core (and border) of each community is estimated by
means of diffusion pn (Sec. III B). As core nodes possess
more intracommunity edges then border nodes, this results
in higher values of pn for core nodes. Thus, within the
algorithm, the node n is relabeled due to the following
rule:

cn =
{

cn for pn > mcn
,

ln for pn � mcn

, (9)

where mcn
is the median of values pn for nodes in community

cn, and ln is a unique label. Thus, the core nodes retain their
original labels, while all border nodes are relabeled. Note that
all nodes with pn equal to the median are also relabeled, to
adequately treat smaller communities, where most of the nodes
share the same value of pn.

Empirical evaluation shows that BDPA significantly outper-
forms basic LPA and also the algorithm of Leung et al. [19]
on smaller networks. However, when networks become larger,
the hop attenuation strategy of Leung et al. [19] produces
much larger communities, with higher values of modularity
(on average).

Different authors have proposed approaches that detect
communities in a hierarchical manner (e.g., [10]). The al-
gorithm is first applied to the original network and initial
communities are obtained. One then constructs the community
network, where nodes represent communities and edges are
added between them, while their nodes are connected in the
original network. The algorithm is then recursively applied
to the community network and the process repeats. At the
end, the best communities found by the algorithm are reported
(according to some measure).

The idea was also proposed in the context of
label propagation [19]; however, the authors did not report
any empirical results. We have analyzed the behavior of

036103-5

LOVRO ŠUBELJ AND MARKO BAJEC PHYSICAL REVIEW E 83, 036103 (2011)

FIG. 4. (Color online) Diagram of (general) diffusion and propagation algorithm (DPA; the figure is merely a schematic representation
of the algorithm and does not correspond to the actual result of the given network). The algorithm combines defensive and offensive label
propagation in a hierarchical manner (steps 1 and 2) to extract the core of the network (red heptagon communities) and to identify whisker
communities (blue triangle and orange square communities). Whiskers are retained as identified communities, while the algorithm is recursively
applied to the core of the (community) network. The recursion continues until all of the nodes of the (current) network are classified into
the same community (i.e., offensive propagation in step 2 flood-fills), when the basic diffusion and propagation algorithm (BDPA) is applied
(steps 3 and 4). For more detailed discussion on the algorithms, see text.

hierarchical label propagation on real-world networks and
also on benchmark networks with planted partition. The
analysis has shown that on the second iteration (when
the algorithm is first run on the community network), the
label propagation (already) produces one major community
or even flood-fills (all nodes are classified into the same
community).

Although the analysis revealed undesirable behavior, we
have observed that the major community commonly coincides
with the core of the network, while other communities
correspond to whisker communities. Leskovec et al. [3] have
extensively analyzed large social and information networks
and observed that (these) networks reveal clear core-periphery
structure—most of the nodes are in the central core of the
network, which does not have a clear community structure,
whereas the best communities reside in the periphery (i.e.,
whiskers), which is only weakly connected with the core. For
further discussion see Appendix A.

Based on the above observations, we propose the following
algorithm denoted the (general) diffusion and propagation
algorithm (DPA); a schematic representation of the algorithm
is depicted in Fig. 4. First, defensive label propagation is ap-
plied to the original network (step 1), which produces a larger
number of smaller communities that are used to construct the
corresponding community network. Second, offensive label
propagation is used on the constructed community network
(step 2), to extract the core of the network (i.e., its major com-
munity) and to identify whisker communities (i.e., all other
communities). The above procedure is then recursively applied
only to the core of the (community) network, while the whisker
communities are retained as identified communities. The
recursion continues until the offensive propagation in step 2
flood-fills (i.e., the extracted core contains all of the nodes

of the network analyzed), when the basic BDPA is applied
(steps 3 and 4).

Empirical analysis on real-world networks shows that
DPA outperforms all other label propagation algorithms (with
comparable time complexity) and is comparable to current
state-of-the-art community detection algorithms. Furthermore,
the algorithm exhibits almost linear complexity (in the number
of edges of the network) and scales even better than the
basic LPA. It should also be noted that the application of the
algorithm is not limited to networks that exhibit core-periphery
structure.

For a thorough empirical analysis and further discussion
on both presented algorithms, see Sec. IV; and for the
pseudocode of the algorithms and discussion on some of the
implementation issues, see Appendix B.

IV. EVALUATION AND DISCUSSION

The section presents the results of the empirical evaluation
of the proposed algorithms.

The algorithms were first compared on two classes of
benchmark networks with planted partition, namely, Girvan
and Newman [6] and Lancichinetti et al. [27] benchmark
networks. For the latter, we also varied the size of the networks
(1000 and 5000 nodes) and the size of the communities (from
10 to 50 and from 20 to 100 nodes). The results are assessed
in terms of normalized mutual information (NMI) [52] and are
shown in Fig. 5.

Analysis clearly shows the difference between defensive
and offensive propagation, especially on larger networks
[Figs. 5(d) and 5(e)]. The offensive propagation (ODALPA)
performs slightly better than the basic LPA and can still
relatively accurately detect communities, while LPA already
performs rather poorly [Fig. 5(d)]. On the other hand, the

036103-6

UNFOLDING COMMUNITIES IN LARGE COMPLEX . . . PHYSICAL REVIEW E 83, 036103 (2011)

FIG. 5. (Color online) Comparison of the proposed algorithms on two classes of benchmark networks with planted partition, namely,
Girvan and Newman [6] networks and four sets of Lancichinetti et al. [27] networks (the results are averages over 100 realizations). Network
sizes equal 128, 1000, and 5000 nodes, and communities comprise up to 100 nodes. Straight (gray) lines at μ = 0.5 denote the point beyond
which the communities are no longer defined in the strong sense [13].

defensive propagation (DDALPA) does not detect communi-
ties as accurately as the other two approaches [Figs. 5(d) and
5(e)]; however, the algorithm still reveals the communities
even when they are only weakly defined (and the other
two approaches clearly fail). In other words, the defensive
algorithm has high recall, whereas the offensive approach
achieves high precision.

Furthermore, BDPA (and DPA) outperforms all three
aforementioned algorithms. Note that the performance does
not simply equal the upper hull of those for DDALPA and
ODALPA. The analysis also shows that core extraction (i.e.,
DPA) does not improve the results on networks with thousands
of nodes or less; the slight improvement on Girvan and
Newman [6] benchmark networks results only from hierar-
chical investigation, and not core extraction. Nevertheless, as
shown below, the results can be significantly improved on
larger networks.

Lancichinetti and Fortunato [53] have conducted a thorough
empirical analysis of more then 10 state-of-the-art community
detection algorithms. To enable the comparison, the bench-
mark networks in Fig. 5 were selected so that they exactly
coincide with those used in [53]. By comparing the results,
we can conclude that DPA does indeed perform at least as
good as the best algorithms analyzed in [53], namely, the

hierarchical modularity optimization of Blondel et al. [10],
the model selection approach of Rosvall and Bergstrom [16],
the spectral algorithm proposed by Donetti and Munoz [15],
and the multiresolution spin model of Ronhovde and Nussinov
[20]. Moreover, on larger networks [Figs. 5(d) and 5(e)], DPA
obtains even better results than all of the algorithms analyzed
in [53]—for μ = 0.8, none of the analyzed algorithms can
obtain NMI above ≈0.35, while the values for DPA are 0.651
and 0.541, respectively.

DPA (and BDPA) was further analyzed on 23 real-world
networks (Table I), ranging from networks with tens of
nodes to networks with several tens of millions of edges
[54]. To conduct a general analysis, we have considered
a wide range of different types of real-world networks, in
particular, social, communication, citation, collaboration, web,
Internet, biological, and other networks (all networks were
treated as unweighted and undirected). Because of the large
number of networks considered, detailed description is omitted
here.

The DPA algorithm was compared with all other pro-
posed label propagation algorithms (to our knowledge), and
with a greedy modularity optimization approach (Table I).
The algorithms are as follows: LPA denotes basic label
propagation [18], and LPAD denotes LPA with decreasing

036103-7

LOVRO ŠUBELJ AND MARKO BAJEC PHYSICAL REVIEW E 83, 036103 (2011)

TABLE I. Peak (maximal) modularities Q for various label propagation algorithms and a greedy optimization of modularity. The modularity
for DPA for elegans was obtained with δmax = 1 and for asi with δmax = 0 (Appendix B); otherwise the values are 0.420 and 0.588, respectively.
Values in italics correspond to the approaches that have significant time complexity compared to DPA.

Network Description Nodes Edges GMO LPA LPAD LPAQ LPAM BDPA DPA No. CEc Tc

karate Zachary’s karate club [33] 34 78 0.381 0.416 0.402 0.399 0.420 0.419 0.420 0.02
dolphins Lusseau’s bottlenose dolphins [38] 62 159 0.529 0.526 0.516 0.529 0.528 0.529 0.59
books Co-purchased political books [39] 105 441 0.526 0.519 0.522 0.527 0.527 0.527 0.46
football American football league [6] 115 616 0.556 0.606 0.606 0.604 0.605 0.606 0.606 0.37
elegans Metabolic network C. elegans [37] 453 2025 0.412 0.421 0.413 0.409 0.452 0.424 0.427b 0.17
jazz Jazz musicians [40] 198 2742 0.439 0.443 0.443 0.445 0.445 0.444 0.444 0.00
netsci Network scientists [9] 1589 2742 0.902 0.947 0.907 0.960 1.00
yeast Yeast protein interactions [41] 2114 4480 0.694 0.799 0.725 0.824 1.04
emails Emails within a university [42] 1133 5451 0.503 0.557 0.560 0.537 0.582 0.555 0.562 0.01
power Western US power grid [32] 4941 6594 0.612 0.804 0.668 0.908 1.14
blogs Weblogs on politics [43] 1490 16718 0.426 0.426 0.426 0.426 1.00
pgp PGP web of trust [44] 10680 24340 0.849 0.754 0.844 0.726 0.884 0.782 0.869 1.08
asi Autonomous syst. of Internet [25] 22963 48436 0.511 0.591 0.528 0.600b 1.02 0 s
codmat3 Cond. Matt. archive 2003a [45] 27519 116181 0.661 0.616 0.683 0.582 0.755 0.634 0.735 1.00 1.5 s
codmat5 Cond. Matt. archive 2005a [45] 36458 171736 0.586 0.643 0.608 0.683 1.00
kdd3 KDD-Cup 2003 dataset [46] 27770 352285 0.624 0.630 0.619 0.617 1.00 3 s
nec nec web overlay map [47] 75885 357317 0.693 0.738 0.703 0.767 1.03
epinions Epinions web of trust [48] 75879 508837 0.382 0.362 0.399 0.402 1.00 4.5 s
amazon3 Amazon co-purchasing 2003 [49] 262111 1.2M 0.682 0.749 0.701 0.857 1.01 20 s
ndedu Webpages in nd.edu domain [50] 325729 1.5M 0.840 0.890 0.863 0.903 1.14
google Web graph of Google [3] 875713 4.3M 0.805 0.923 0.822 0.968 1.01 2.5 m
nber NBER patents citations [51] 3.8M 16.5M 0.573 0.624 0.583 0.759 1.20
live Live Journal friendships [3] 4.8M 69.0M 0.538 0.539 0.557 0.693 1.00 44 m

aReduced to the largest component of the original network.
bObtained with slightly modified version of DPA (see caption).
cAverage number of core extractions and computational times for DPA.

hop attenuation and node preference equal to the degree
of the node [19] (Sec. II). The modularity optimization
version of LPA is denoted LPAQ [11], and its refinement
with multistep greedy merging LPAM [12]. Furthermore,
GMO denotes greedy modularity optimization, proposed by
Clauset et al. [8].

For each algorithm, we report peak (maximal) modularities
obtained on the networks analyzed. Modularities for LPA,
LPAD, BDPA, and DPA were obtained by running the algo-
rithms from 2 to 100 000 times on each network (depending on
the size of the network). On the other hand, peak modularities
for LPAQ and LPAM (and also GMO) were reported by Liu
and Murata [12].

The results show that DPA outperforms all other label
propagation algorithms, except LPAM on networks of medium
size (i.e., elegans, emails, pgp, and codmat3). However, further
analysis reveals that on these networks, LPAM already has
considerable time complexity compared to DPA. It should also
be noted that modularities obtained by LPAM on three of these
networks correspond to the highest modularity values ever
reported in the literature. Similarly, peak modularities obtained
by DPA (and some others) on smaller networks also equal the
highest modularities ever published (to our knowledge, the
modularity for football even slightly exceeds the highest value
ever reported, i.e., 0.606, as opposed to 0.605). In summary,
DPA obtains significantly higher values of modularity than
other comparable label propagation approaches, especially on
larger networks (with millions of nodes and edges).

As already discussed in Sec. III C, BDPA achieves superior
results on smaller networks, better than LPA, LPAQ, and LPAD
(and GMO). However, the algorithm is not appropriate for

FIG. 6. (Color online) Time complexity of different label prop-
agation algorithms estimated on real-world networks from Table I
(results are averages over 100 iterations). From top to bottom, straight
lines correspond to 0.83m0.51, 5.15m0.19, and 1.03m0.23, while the
text denotes the overall time complexity of the algorithms (LPAM,
DPA, and LPA, respectively). On a network with a billion edges, the
(projected) number of iterations for DPA and LPA would equal 265
and 113, respectively.

036103-8

UNFOLDING COMMUNITIES IN LARGE COMPLEX . . . PHYSICAL REVIEW E 83, 036103 (2011)

TABLE II. Mean pairwise NMI of distinct community structures
identified by different label propagation algorithms in 10 000 itera-
tions (on selected set of networks from Table I).

Network Nodes Edges LPA BDPA DPA

karate 34 78 0.574 0.578 0.660
dolphins 62 159 0.714 0.762 0.774
books 105 441 0.737 0.803 0.805
football 115 616 0.878 0.896 0.897
elegans 453 2025 0.610 0.615 0.618
jazz 198 2742 0.602 0.748 0.808

larger networks, where hierarchical core extraction prevails
(i.e., DPA).

We have also analyzed the number of core extractions
(Sec. III C) made by DPA on these networks (Table I). Core
extraction does not gain on networks with less than thousands
of nodes or edges, where the average number is commonly
close to 0. However, when networks become larger, a (single)
core extraction produces a significant gain in modularity (on
these networks). Interestingly, even on a network with several
millions of nodes and several tens of millions of edges (i.e.,
live), the number of extractions is still 1 (on average).

Next, we have thoroughly compared the time complexity
of a simple LPA and DPA (and also LPAM [12]). On each
iteration of the algorithms, each edge of the network is
visited (at most) twice. Thus the time complexity of a single
iteration equals O(m), with m being the number of edges.
The complexity for DPA is even lower, after the core has
been extracted; however, due to simplicity, we consider each
iteration to have complexity O(m).

Iterative algorithms (such as label propagation) are com-
monly assessed only on smaller networks, where the number
of iterations can be bounded by a small constant. In this
context, both LPA and DPA exhibit nearly linear complexity,
O(m). However, on networks with thousands or millions of
nodes and edges, this “constant” indeed increases—even for
simple LPA, which is known for its speed, the number of
iterations notably increases on larger networks. We have thus
analyzed the total number of iterations made by the algorithms
on real-world networks (Table I). The results are shown in
Fig. 6 (the number of edges m is chosen to represent the
size of the network). Note that the number of iterations for
DPA corresponds to the sum of the iterations made by all
of the algorithms run within (i.e., DDALPA, ODALPA, and
BDPA).

As discussed earlier, DPA (and LPA) scales much better
than LPAM—the average number of iterations on a network
with tens of millions of edges is 147 and 78 for DPA and LPA,
respectively, while LPAM already exceeds 300 iterations on
networks with tens of thousands of edges. Furthermore, results
also show that DPA scales even better than simple LPA [i.e.,
O(m1.19), as opposed to O(m1.23)]; however, it is outperformed
by LPA because of a larger constant. Nevertheless, the analysis
shows promising results for future analyses of large complex
networks.

In the context of analyzing large networks, it should be
mentioned that by far the fastest convergence is obtained
by using the defensive propagation algorithm DDALPA
(Sec. III B). On the largest of the networks (i.e., live), the
algorithm converges in only 25 iterations (3 times faster than
LPA); still, the modularity of the revealed community structure
is only 0.470.

FIG. 7. (Color online) (Cumulative) distributions of the community sizes for three real-world networks from Table I (for the epinions
network, the results were averaged over 10 runs). Note some particularly large communities revealed by DPA in the case of the google and nber
networks (with around 104 and 106 nodes, respectively). Interestingly, these coincide with the low-conductance [55] communities reported
in [3].

036103-9

LOVRO ŠUBELJ AND MARKO BAJEC PHYSICAL REVIEW E 83, 036103 (2011)

Last, we have also studied the stability of DPA (and BDPA),
and compared it with simple LPA. The latter is known to
find a large number of distinct community structures in each
network [12,18,23], while Tibély and Kertész [23] have argued
that these structures are relatively different among themselves.
Indeed, on the zachary network LPA revealed 628 different
community structures (in 10 000 iterations), while this number
equals 159 and 124 for BDPA and DPA, respectively. However,
as the number of distinct communities can be misleading,
we have rather directly compared the identified community
structures.

In Table II we show mean pairwise NMI of (distinct)
community structures that were identified by the algorithms
on a selected set of real-world networks. DPA (and BDPA)
appears to be more stable than LPA; moreover, the identified
community structures are relatively similar for all of the algo-
rithms considered (in most networks analyzed). Interestingly,
the results also seem to correlate well with the modularities
shown in Table I—the clearer the community structure of the
network, the more stable the algorithms appear. Nevertheless,
as indicated by various previous authors [18,23], the number
of different community structures can be very high, especially
in larger networks (e.g., 1116 and 1330 for DPA applied to the
football and jazz networks, respectively).

(Cumulative) distributions of sizes of communities, ob-
tained with the proposed algorithms on three real-world
networks, are shown in Fig. 7.

V. CONCLUSION

This paper proposes an advanced label propagation commu-
nity detection algorithm that combines two unique strategies of
community formation. The algorithm analyzes the network in
a hierarchical manner that recursively extracts the core of the
network and identifies whisker communities. The algorithm
employs only local measures for community detection and
does not require the number of communities to be specified
beforehand. The proposition was rigorously analyzed on
benchmark networks with planted partition and on a wide
range of real-world networks, with up to several millions of
nodes and tens of millions of edges. The performance of
the algorithm is comparable to the current state-of-the-art
community detection algorithms; moreover, the algorithm
exhibits almost linear time complexity (in the number of edges
of the network) and scales even better than the basic label
propagation algorithm. The proposal thus gives prominent
grounds for future analysis of large complex networks.

This work also provides further understanding on the
dynamics of label propagation, in particular, on how different
propagation strategies can alter the dynamics of the process
and reveal community structures with unique properties.

ACKNOWLEDGMENTS

The authors wish to thank (anonymous) reviewers for
comments and criticisms that helped improve the paper. This
work has been supported by the Slovene Research Agency
ARRS within Research Program No. P2-0359.

APPENDIX A: CORE-PERIPHERY STRUCTURE

Leskovec et al. [3] have conducted an extensive analysis
of large social and information—and some other—networks.
They have observed that these networks can be clearly divided
into the central core and remaining periphery (i.e., the core-
periphery structure). The periphery is constituted of many
small, well-defined communities (in terms of conductance
[55]) that are only weakly connected to the rest of the
network. When they are connected by a single edge, they
are called whiskers (or 1-whiskers). On the other hand, the
core of the network consists of larger communities that
are well connected, and thus only loosely defined in the
sense of communities. Their analysis has thus shown that
the best communities (according to conductance) reside in
the periphery of these networks (i.e., whiskers) and have a
characteristic size of around 100 nodes. For further discussion,
see [3,56].

APPENDIX B: ALGORITHMS

In this section we give the pseudocode of all the algorithms
proposed in this paper (Figs. 8–10) and discuss some of the
implementation issues.

Because of the nature of label propagation, it may be that
when the algorithm converges, two (disconnected) communi-
ties share the same label. This happens when a node propagates
its label in two direction but is itself relabeled in the later stages
of the algorithm. Nevertheless, disconnected communities can
be detected at the end using a simple breath-first search.

Each run of BDPA or DPA (Figs. 9 and 10) unfolds several
sets of communities and the best are returned at the end

Input: Graph G(N,E) with weights W
Output: Communities C (i.e. node labels)
1: δ ← 0
2: for n ∈ N do
3: cn ← ln {Unique label.}
4: dn ← 0
5: pn ← 1/|N |
6: end for
7: shuffle(N)
8: while not converged do
9: for n ∈ N do

10: cn ← argmaxl

∑
i∈N l(n)

pi(1 − δdi)wni

11: if cn has changed then
12: dn ← (mini∈Ncn (n) di) + 1
13: pn ← ∑

i∈Ncn (n)
pi/k

cn
i

14: end if
15: end for
16: δ ← proportion of labels changed
17: if δ ≥ δmax then
18: {δmax is fixed to 1

2
.}

19: δ ← 0
20: end if
21: end while
22: return C

FIG. 8. Defensive label propagation algorithm with (dynamic)
hop attenuation (DDALPA). In the offensive version (ODALPA), the
node preference pi is replaced by 1 − pi (line 10) and the degree k

cn

i

is replaced by ki (line 13).

036103-10

UNFOLDING COMMUNITIES IN LARGE COMPLEX . . . PHYSICAL REVIEW E 83, 036103 (2011)

Input: Graph G(N,E) with weights W
Output: Communities C (i.e. node labels)

C ← DDALPA(G,W)
for c ∈ C do

{Retain community cores.}
mc ←median({pn| n ∈ N ∧ cn = c})
for n ∈ N ∧ cn = c ∧ pn ≤ mc do

cn ← ln {Unique label.}
dn ← 0
pn ← 0 {Maximal preference.}

end for
end for
C ← ODALPA(G,W)
return C {Returns best communities.}

FIG. 9. Basic diffusion and propagation algorithm (BDPA).

(according to some measure of goodness of communities).
For the analysis in Sec. IV, the algorithms reported community
structures that obtained the highest modularity (computed on
the original network). Thus, the results might be attributed to
modularity’s resolution limit problem [57] or other limitations
[58]; still, this is not a direct artifact of the algorithms.

Input: Graph G(N,E) with weights W
Output: Communities C (i.e. node labels)

C ← DDALPA(G,W)
CC ← ODALPA(GC ,WC)
if CC contains one community then

C ← BDPA(G,W)
else

{Recursion on core c in CC .}
C ← (CC − {c}) ∪ DPA(GC(c),WC(c))

end if
return C {Returns best communities.}

FIG. 10. Diffusion and propagation algorithm (DPA).

An additional note should be made for the offensive
propagation algorithm ODALPA (Fig. 8). When used on
networks with several thousands of nodes or less, diffusion
values pn should only be updated (line 13) after the first
iteration; otherwise the algorithm might not converge. The
reason is that during the first iteration, communities are still
rather small (because of the size of the network) and thus
all of the nodes lie in the border of the communities. Hence,
updating the diffusion values results in applying propagation
preference to all of the nodes.

[1] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature (London)
435, 814 (2005).

[2] E. Ravasz and A. L. Barabási, Phys. Rev. E 67, 026112
(2003).

[3] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney,
Internet Mathematics 6, 29 (2009).

[4] M. E. J. Newman and E. A. Leicht, Proc. Nat. Acad. Sci. USA
104, 9564 (2007).

[5] S. Pinkert, J. Schultz, and J. Reichardt, PLoS Comput. Biol. 6,
e1000659 (2010).

[6] M. Girvan and M. E. J. Newman, Proc. Nat. Acad. Sci. USA 99,
7821 (2002).

[7] M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113
(2004).

[8] A. Clauset, M. E. J. Newman, and C. Moore, Phys. Rev. E 70,
066111 (2004).

[9] M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).
[10] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre,

J. Stat. Mech. (2008) P10008.
[11] M. J. Barber and J. W. Clark, Phys. Rev. E 80, 026129 (2009).
[12] X. Liu and T. Murata, Physica A 389, 1493 (2009).
[13] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi,

Proc. Natl. Acad. Sci. USA 101, 2658 (2004).
[14] C. Pang, F. Shao, R. Sun, and S. Li, in Proceedings of the

International Symposium on Neural Networks, edited by W. Yu,
H. He, and N. Zhang (Springer, Wuhan, 2009), pp. 839–846.

[15] L. Donetti and M. A. Muñoz, J. Stat. Mech. (2004) P10012.
[16] M. Rosvall and C. T. Bergstrom, Proc. Natl. Acad. Sci. USA

105, 1118 (2008).
[17] A. Firat, S. Chatterjee, and M. Yilmaz, Comput. Stat. Data Anal.

51, 6285 (2007).

[18] U. N. Raghavan, R. Albert, and S. Kumara, Phys. Rev. E 76,
036106 (2007).

[19] I. X. Y. Leung, P. Hui, P. Liò, and J. Crowcroft, Phys. Rev. E 79,
066107 (2009).

[20] P. Ronhovde and Z. Nussinov, Phys. Rev. E 81, 046114 (2010).
[21] X. Liu and T. Murata, in Proceedings of the IEEE/WIC/ACM

International Joint Conference on Web Intelligence and Intelli-
gent Agent Technology, Vol. 1 (IEEE, Washington, DC, 2009),
pp. 50–57.

[22] S. Fortunato, Phys. Rep. 486, 75 (2010).
[23] G. Tibély and J. Kertész, Physica A 387, 4982 (2008).
[24] P. Schuetz and A. Caflisch, Phys. Rev. E 77, 046112 (2008).
[25] M. E. J. Newman, [http://www-personal.umich.edu/∼mejn/

netdata/].
[26] Throughout the article we refer to core and whiskers of the

network as being the result of the algorithm, although this might
not necessarily coincide with the analysis of Leskovec et al. [9].

[27] A. Lancichinetti, S. Fortunato, and F. Radicchi, Phys. Rev. E 78,
046110 (2008).

[28] The conclusion naturally depends on the definition of research
communities, which are, in this case, communities revealed by
the algorithm.

[29] S. Gregory, e-print arXiv:0910.5516.
[30] L. Freeman, Sociometry 40, 35 (1977).
[31] L. C. Freeman, Soc. Networks 1, 215 (1979).
[32] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440 (1998).
[33] W. W. Zachary, J. Anthropol. Res. 33, 452 (1977).
[34] The estimation could also be done by using the label propagation

itself; however, we believe that using the floating-point counter-
part of the approach would produce more accurate results in
practice.

036103-11

http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1103/PhysRevE.67.026112
http://dx.doi.org/10.1103/PhysRevE.67.026112
http://dx.doi.org/10.1073/pnas.0610537104
http://dx.doi.org/10.1073/pnas.0610537104
http://dx.doi.org/10.1371/journal.pcbi.1000659
http://dx.doi.org/10.1371/journal.pcbi.1000659
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1103/PhysRevE.80.026129
http://dx.doi.org/10.1016/j.physa.2009.12.019
http://dx.doi.org/10.1073/pnas.0400054101
http://dx.doi.org/10.1088/1742-5468/2004/10/P10012
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1016/j.csda.2007.01.010
http://dx.doi.org/10.1016/j.csda.2007.01.010
http://dx.doi.org/10.1103/PhysRevE.76.036106
http://dx.doi.org/10.1103/PhysRevE.76.036106
http://dx.doi.org/10.1103/PhysRevE.79.066107
http://dx.doi.org/10.1103/PhysRevE.79.066107
http://dx.doi.org/10.1103/PhysRevE.81.046114
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physa.2008.04.024
http://dx.doi.org/10.1103/PhysRevE.77.046112
http://www-personal.umich.edu/%7Emejn/netdata/
http://www-personal.umich.edu/%7Emejn/netdata/
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://arXiv.org/abs/arXiv:0910.5516
http://dx.doi.org/10.2307/3033543
http://dx.doi.org/10.1016/0378-8733(78)90021-7
http://dx.doi.org/10.1038/30918

LOVRO ŠUBELJ AND MARKO BAJEC PHYSICAL REVIEW E 83, 036103 (2011)

[35] S. Brin and L. Page, Comput. Networks ISDN 30, 107
(1998).

[36] J. M. Kleinberg, J. ACM 46, 604 (1999).
[37] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. Barabási,

Nature (London) 407, 651 (2000).
[38] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten,

and S. M. Dawson, Behav. Ecol. Sociobiol. 54, 396 (2003).
[39] V. Krebs, [http://www.orgnet.com/].
[40] P. Gleiser and L. Danon, Adv. Complex Syst. 6, 565 (2003).
[41] H. Jeong, S. P. Mason, A. Barabási, and Z. N. Oltvai, Nature

(London) 411, 41 (2001).
[42] R. Guimerà, L. Danon, A. Dı́az-Guilera, F. Giralt, and A. Arenas,

Phys. Rev. E 68, 065103 (2003).
[43] L. A. Adamic and N. Glance, in Proceedings of the International

Workshop on Link Discovery, edited by J. Adibi, M. Grobelnik,
D. Mladenic, and P. Pantel (ACM, New York, 2005), pp. 36–43.

[44] M. Boguná, R. Pastor-Satorras, A. Dı́az-Guilera, and A. Arenas,
Phys. Rev. E 70, 056122 (2004).

[45] M. E. J. Newman, Proc. Natl. Acad. Sci. USA 98, 404 (2001).
[46] See [http://www.sigkdd.org/kddcup/].
[47] M. Hoerdt, M. Jaeger, A. James, D. Magoni,

J. Maillard, D. Malka, and P. Merindol, [http://www.labri.fr/
perso/magoni/nec/].

[48] M. Richardson, R. Agrawal, and P. Domingos, in Proceedings of
the International Semantic Web Conference, edited by D. Fensel,

K. P. Sycara, and J. Mylopoulos, Vol. 2 (Springer, Berlin, 2003),
pp. 351–368.

[49] J. Leskovec, L. A. Adamic, and B. A. Huberman, ACM Trans.
Web 1, (2007).

[50] R. Albert, H. Jeong, and A. Barabási, Nature (London) 401, 130
(1999).

[51] B. H. Hall, A. B. Jaffe, and M. Tratjenberg, The NBER Patent
Citation Data File: Lessons, Insights and Methodological Tools,
Tech. Rep. (National Bureau of Economic Research, 2001).

[52] L. Danon, A. Dı́az-Guilera, J. Duch, and A. Arenas, J. Stat.
Mech. (2005) P09008.

[53] A. Lancichinetti and S. Fortunato, Phys. Rev. E 80, 056117
(2009).

[54] The analysis on networks with hundreds of millions or even
billions of edges was bounded due to limited memory resources.

[55] B. Bollobás, Modern Graph Theory (Springer-Verlag, Berlin,
1998).

[56] J. Leskovec, K. J. Lang, and M. W. Mahoney, in Proceedings of
the ACM International Conference on World Wide Web, edited
by M. Rappa, P. Jones, J. Freire, and S. Chakrabarti (ACM, New
York, 2010), pp. 631–640.

[57] S. Fortunato and M. Barthelemy, Proc. Natl. Acad. Sci. USA
104, 36 (2007).

[58] B. H. Good, Y. A. de Montjoye, and A. Clauset, Phys. Rev. E
81, 046106 (2010).

036103-12

http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1145/324133.324140
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1007/s00265-003-0651-y
http://www.orgnet.com/
http://dx.doi.org/10.1142/S0219525903001067
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1103/PhysRevE.68.065103
http://dx.doi.org/10.1103/PhysRevE.70.056122
http://dx.doi.org/10.1073/pnas.021544898
http://www.sigkdd.org/kddcup/
http://www.labri.fr/perso/magoni/nec/
http://www.labri.fr/perso/magoni/nec/
http://dx.doi.org/10.1145/1232722.1232727
http://dx.doi.org/10.1145/1232722.1232727
http://dx.doi.org/10.1038/43601
http://dx.doi.org/10.1038/43601
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1073/pnas.0605965104
http://dx.doi.org/10.1073/pnas.0605965104
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1103/PhysRevE.81.046106

