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Abstract. The problem this paper addresses is related to Data Stream
Mining and its automatization within Information Systems. Our aim is
to show that the expertise which is usually provided by data and data
mining experts and is crucial for problems of this kind can be successfully
captured and computerized. To this end we observed data mining experts
at work and in discussion with them coded their knowledge in a form of
an expert system. The evaluation over four different datasets confirms
the automatization of the stream mining process is possible and can
produce results comparable to those achieved by data mining experts.
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1 Introduction

With emergence of pervasive distributed computing environments, such as cell
phones and sensor networks, the data production has enormously increased [8].
In such environments, data are frequently seen as continuous infinite streams,
which cannot be stored for later use. The storage and processing characteris-
tics of streams do not allow for the application of conventional techniques for
data analysis and mining; instead, specialized approaches are required that are
capable of timely analysis and efficient memory usage. Data stream mining re-
ceived a lot of attention among researchers and a lot of aspects have already
been investigated and resolved [2,13].

The approaches that are available today offer a reasonable trade-off between
predictive accuracy and timely responsiveness and can be efficiently used to
handle various practical situations [8]. However, data mining requires a deep
understanding of the problem domain and data (provided by domain experts)
and processing techniques (algorithms, their usage and optimization) that can be
employed to perform the analysis (provided by data mining experts). This neces-
sity to employ data and domain experts is recognized as an important obstacle
which limits the usage of the data stream mining approaches in practice [9].

In this paper we focus on automatization of the data stream mining process.
We do this by capturing and storing the knowledge that the experts employ in
various steps of the stream mining process. The main steps of our approach in-
clude: (1) the acquisition of the client’s requirements and main data properties,
(2) the selection of methods that best match the given problem, (3) the setting
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and trimming methods’ parameters, and (4) learning from the method applica-
tion on the given problem. We carefully analyzed and discussed the above steps
over four case studies with two selected experts. As a result we developed an
expert system that fully automatizes the stream mining process. We show that
the stream mining of a reasonable quality can be performed using only a min-
imal domain knowledge and without involvement of data mining experts. This
is an important finding which reveals that the stream mining can become more
widely used within information systems dealing with streams of data.

The paper is structured as follows: Section 2 briefly explains the related work,
Section 3 the expert system, and Section 4 the evaluation. The conclusion is
given in Section 5.

2 Related Work

We relate our work to the two relevant sub-fields of machine learning: (1) the
field of incremental learning, which deals with the complexity of this task, and
(2) the field of meta-learning, which focuses on automatically relating algorithm
performance to the characteristics of the data and prior domain knowledge. In
the following we review the important works in the both fields.

2.1 Data Stream Processing and Its Complexity

A data stream consists of an ordered sequence of examples, which arrive on-
line. Examples of such applications include sensor measurements, financial ap-
plications, telecommunication and network transactions, and others. To achieve
processing in real time, the examples are read only once, processed and then
discarded or archived. If the example is archived, it has to be stored in memory,
which is relatively small compared with the potentially unbounded size of the
whole data stream. Several works [2,8] discuss characteristics of data streams
and emphasize the following:

— stream mining is performed by sliding window techniques which maintain
only the most recent examples in the stream;

— batch processing approaches are inadequate due to the fast processing re-
quirements and the inability to store all past data. They have to be replaced
with incremental approaches;

— adaptivity to changes in data is important due to potentially changing data
distributions. Since the sequence of examples is not independent and the
examples are generated by non-stationary distributions, the target concept
may gradually change over time (concept drift) [5];

— summarization, sampling and synopsis techniques are required to compress
data and store their statistics; and

— queries over streams cannot be evaluated precisely and are approximated.

Different research directions stem from the listed set of challenges, e.g., propos-
ing learning algorithms for supervised and unsupervised learning [4], improving
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their accuracy [13], performing queries over transient examples in a stream [2],
sampling over data streams, dealing with concept drift [8], and others. The di-
versity of the former challenges illustrates the complexity of the decisions that
need to be taken by users.

2.2 Meta-modeling of Algorithm Performance

Meta-learning focuses on modeling relationship between characteristics of a prob-
lem domain and the learning algorithm performance [6]. To predict the perfor-
mance, the meta-learning algorithm records the past empirical performance of
different learning algorithms along with the attributes that describe the prob-
lem domain. Choosing these meta-attributes appropriately is a challenge in this
field; they can be based either on the data parameters (e.g., data set size, num-
ber of attributes, class distributions etc.) or the parameters of the particular
underlying learning algorithm [1]. An alternative to automatic construction of
meta-learning knowledge is to construct them manually.

Related meta-learning based approaches include stacked generalization [16],
which is considered a form of meta-learning because the transformation of the
training set conveys information about the predictions of the base-learners; se-
lecting a learning algorithm for each individual test example based on the algo-
rithm’s performance exhibited in the example’s neighborhood [11]; and inductive
transfer of learned knowledge across domains or tasks [12].

Both mentioned fields of the related work motivate us to develop an ex-
perimental automated stream mining system that addresses the challenges of
the incremental learning and uses meta-modeling to facilitate automation of
parameter-setting tasks. Our wishful goal is to enable the non-data mining ex-
perts to use the proposed system and achieve comparable performance to the
performance of algorithms used by field experts.

3 Expert System

3.1 Stream Mining Process

As emphasized in the introduction, the goal of our research was (a) to capture the
expert knowledge of stream mining experts and (b) to formalize this knowledge
within an expert system for the automatization of the stream mining process.
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In a typical stream mining scenario, there are two kinds of experts involved,
both having important roles: data mining experts and domain experts. Whereas
the former provide expertise on stream mining techniques, the latter help the
stream mining experts to faster identify crucial data properties which would oth-
erwise remain hidden. It is important to note here that in our work we assumed
that only a minimal knowledge on the domain is available; by avoiding require-
ment for domain expertise we therefore aimed to make the system as general as
possible. Based on the above limitation and discussion with two stream mining
experts we constructed a simplified stream mining process, shown in Figure 1
(explanation in the following). In this process we identified three main areas
where the expert knowledge is most important, which are:

— the construction, aggregation and selection of relevant attributes (Figure 1,
Activity 2);

— the selection of most appropriate stream mining methods based on problem
and data description (Figure 1, Activity 3); and

— setting and re-setting of stream mining methods’ parameters (Figure 1, Ac-
tivities 4 and 6).

In the following sections we first explain the minimal domain knowledge that is
required in order to mine streams (with or without experts). Then we describe
the activities within the stream mining process where the mining expertise is
the most beneficial and explain how these activities were implemented within
our expert system.

3.2 Minimal Required Knowledge

For an expert or an expert system some minimal required prior knowledge (RK)
is beneficial to make reasonably informed decisions and recommendations:

RK1. Client’s subjective preferences: requirements such as transparency, visu-
alization possibilities, ability to explain and evaluate results in terms of
confidence or reliability. Fulfilling these requirements dictates the choice
of stream mining methods;

RK2. Client’s objective preferences: requirements for data stream predictors.
How will performance be measured? What is a required response time?
Should responses be available at any time, even if they are not perfect?
What are the time spans of interest? What is the frequency of predictions?
For example, the client might request that every day at 6:00 AM we
produce predictions of certain parameters for the next 6,12 and 24 hours;

RK3. Known data stream properties: number of attributes, attribute types, at-
tribute values, distribution of values, frequency of data generation, sparse
(e.g., unstructured text) or dense (e.g., sensor) data; and

RK4. Known data stream mining problem properties: also based on client’s
preferences and determines the necessary stream mining paradigm, i.e.,
prediction of parameter values (both discrete-classification and continuous-
regression), anomaly detection, detection of recurrent and/or irregular
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patterns, and concept drift detection (fundamental changes in data stream
generation process).

Initial recommendations of the stream mining experts are produced by consider-
ation of RK1-RK4 without looking into the data stream, which is assumed not
to be available at this point. This activity (requirements acquisition) is not yet
implemented in our expert system and thus has to be performed manualy in dis-
cussion with the client. In future, we intend to develop wizard-based interfaces
that will allow clients to provide requirements and domain knowledge directly
to the system, i.e., without any involvement of the experts.

3.3 Choosing Appropriate Stream Mining Methods

After acquiring the main client preferences (RK1 and RK2) and data proper-
ties (RK3), a stream mining expert selects a set of methods that best match
the given problem. This is typically done by considering the importance of dif-
ferent methods’ characteristics for the client. The following characteristics are
considered as the most important and included in the discussion:

— Transparency reflects experts’ opinion on how readable and transparent will
be the generated model for end-users;

— Visualization describes possibilities for visual representation of the model;

— FEzxplanation refers to model’s abilities to automatically explain its predic-
tions and allow users to assess them;

— Reliability describes model’s abilities to automatically estimate reliability of
its predictions, as well as to allow users to assess them;

— Response is an estimate of model’s expected response time, both in terms of
model updates (training) and model predictions. Normally, shorter response
times go hand in hand with lower performance; and

— Performance is an estimate of model’s performance (in terms of established
performance measures, such as mean squared error, classification accuracy,
Kk statistic etc.).

In our expert system, we first filter the available stream mining methods and
select only a subset that best matches client’s requirements and domain descrip-
tion. Later, during stream mining we on-line evaluate the selected methods on
real data and further refine their selection, if necessary. The knowledge that we
acquired from the experts and used to filter out the methods that best match the
client’s requirements, is summarized in the Table 1 (for classification methods
only, due to lack of space).

Our system supports 12 classifiers (methods for predicting a discrete class at-
tribute), 9 regressors (methods for predicting a continuous class attribute) and 5
clustering algorithms from WEKA, MOA and IBLStreams toolkits [7,3,15]. For
classification we use: BAYES: a simple Naive Bayesian classifier; RULES: decision
rules with Naive Bayes classifiers; TREE: a Hoeffding tree with information gain
split criterion; ENSMB: a weighted ensemble with Hoeffding trees; BOOST: Ad-
aBoost boosting approach based; KNN: simple nearest neighbors; and META: a
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Table 1. Descriptive properties of data stream mining methods for classification meth-
ods. The symbols in the table denote: high importance (4), medium importance (0),
low importance (—).

Transparency Visualization Explanation Reliability Response Performance

BAYES ¢} o + + + +
TREE + + + + o 9
KNN ¢} o o e} — o
RULES ¢} o + e} e} o
ENSMB - - o o — 4
BOOST — — o o — +

meta approach with all above based on « statistic. For regression we use: KNN:
nearest neighbors with linear regression; RULES: adaptive model rules regres-
sion; TREE: a Hoeffding regression tree with options; ADDIT: stochastic gradient
boosting; DISCT: discretization based approach; SVM: support vector machines
based; and META: meta approach with all above based on MSE.

3.4 Setting and Trimming Stream Mining Methods’ Parameters

In a stream mining experiment the stream mining experts start by setting some
reasonable parameter values. When data arrives, the experts observe methods’
performance and experiment with their parameters. The choice and magnitude
of parameter changes is based on experts’ experience and intuition and is difficult
to formalize.

For our initial experiments, the experts provided parameter values that were
expected to provide reasonable performance of the selected methods. Some pa-
rameters (e.g., initial window size) were set according to expected frequency of
data generation (RK3), required timespans and frequency of predictions (RK3),
thus, to include all possible natural and human cycles. For each of the chosen
data stream mining methods, experts also identified a small number of parame-
ters that were sensible to further tune to increase methods’ performance.

For the automatization of this activity (Figure 1, Activities 4-6), we initially
set the parameters to their default values and then tune them based on the
methods’ performance. While the first step is rather trivial (the default values
are typically suggested by the methods’ authors), the second one is much more
complicated, as it requires a learning system. We implemented such a system
that executes data mining methods in a batch and tunes their parameters on
recent subsets of data in order to optimize performance indicators ( statistic or
mean squared error). When the improvement of tuned performance compared
with the online performance is statistically significant, the parameter values are
applied also within the production (online) stream mining methods. In contrast
to the manual parameter setting, where stream mining experts work only with a
subset of parameters, the expert system deals with all the parameters in parallel.
In addition, if some of the initially selected methods significantly decline in their
expected performance, they are terminated and possibly replaced with others.
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Please note that the herein described online parameter tuning feedback loop is
still a work in progress, and its results are not included in this paper.

3.5 Construction, Aggregation and Selection of Relevant Attributes

Data preprocessing, cleaning and filtering, attribute construction, aggregation,
and subset selection, are very important for successful data mining. Many meth-
ods are prone to perform poorly when using irrelevant and noisy attributes.
While some data mining methods implement constructive induction of attributes
[10], they are very complex and time consuming and therefore inappropriate for
stream mining. Data expert knowledge (if available) can be used to construct
more relevant general attributes; however, for data streams, temporal aggrega-
tions are relatively straightforward.

In the observed experiments the stream mining experts started with the ap-
plication of some basic data preprocessing techniques, such as imputation of
missing values detection and imputation of outliers, and adaptive normalization
of continuous values. For the supervised stream mining problems, they extended
the data with a class attribute lagged by one time step and by the size of the
prediction window. They proceeded with attribute aggregation, mostly based on
prior data knowledge and their experience.

In our system, we include all basic data preprocessing techniques that are
described above. We also provide lagged class attributes, and descriptive statis-
tics, such as the average, mode and others. Temporal attribute aggregation is
based on online implementations of discrete and continuous distributions that
allow on-the-fly construction of different attributes (e.g., lagged, minimum, av-
erage, mode, median, randomly sampled etc.). Stream mining experts defined
several periods, based upon natural and human cycles (e.g., hourly, daily, weekly,
monthly, yearly). In conjunction with expected frequency of data generation
(RK3) we automatically generate aggregate and lagged attributes, such as (for
an hourly cycle) data reading an hour ago and hourly cyclic attributes (i.e., sine
and cosine with an hourly period).

3.6 Architecture of the Stream Mining Expert System

Figure 2 illustrates the high-level architecture of our proposed system. The sys-
tem in the figure has two inputs: (1) domain description and user requirements
(denoted with (2)) and (2) a data stream itself (denoted with (1)). Knowledge
base consists of decision rules and tables that were elicited from data min-
ing experts. We use it for initial method and parameter selection, selection of
evaluation protocol with respect to the stream properties, and on-line parame-
ter trimming (denoted with (3) and (4)). These entries are continuously refined
during stream mining by including better parameter settings produced by meta
learner (denoted with (6) and (7)).

A selected subset of appropriate stream mining methods (utilizing WEKA,
MOA, and IBLStreams toolkits) is run in parallel for a given data stream (de-
noted with (9)). The induced stream models are evaluated in the model evaluator
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Fig. 2. Expert system high-level architecture

(denoted with (5)). Tts function is twofold: (1) to assist meta learner’s feedback
loop in order to select better methods and their parameters, and (2) to provide
the best current model’s results (usually a prediction) to GUT (denoted with (8)).

3.7 Meta Learner

In our stream mining expert system, as depicted in Figure 2, the meta learner
component plays a crucial part. It is used for both initial selection of applicable
stream mining methods and their parameter setting and optimization of stream
mining methods’ parameters during execution.

Initially, a subset of methods is selected, based upon client’s requirements and
domain description. For this purpose, expert knowledge encoded in the knowl-
edge base is used. An example of encoded knowledge used for method selection
is shown in Table 1. When a subset of methods M = {M;, Ms,..., M,} is se-
lected, they are also assigned a set of default parameters (part of the knowledge
base), and a set of tunable! parameters with their tuning range (both default
parameters and sensible tuning range are also parts of the knowledge base).

For the purpose of parameter optimization, for each method M; we run several
instances M;; in parallel with slightly (randomly) perturbed tunable parameters.
All method instances M;; are run in parallel on the same data stream. Fur-
ther parameter optimization is performed with fairly standard genetic algorithm
approach [14]. The interval for production of fitness values is determined from
client’s required timespans and frequency of predictions (RK3).

! Note that not all parameters can be tuned during method’s execution. An example
is changing neural network’s topology.
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For the purpose of genetic operators parameter values are Gray-encoded
within the tuning range with resolution of 10 bits. Standard crossover and mu-
tation operators are used in conjunction with tournament selection. Besides this
we also use twofold elitist approach. For the next generation we always save the
currently best instance M; max ; and the instance with default parameter settings
M;o. When performance of the currently best instance is significantly (p < 0.01)
better than the performance of the instance M;0 with default parameters, the
new set of parameters is forwarded (see (4) in Figure 2) from the method pro-
cessor into the knowledge base alongside with the domain description.

Our current approach assumes that we have enough resources available to run
several method instances in parallel (in total possibly hundreds of instances). We
intend to explore also a resource-scarce scenario when for each method M; we
will have only a single instance for parameter tuning. It will work on windowed
samples and serially optimize parameter values.

3.8 Integration within an Information System

From the information system engineering point of view, such an expert system,
once developed, can be reused in various contexts and information systems.
Its integration within an information system that deals with data streams and
requires the stream prediction, is straightforward due to a very clear interface -
the data stream is routed to the expert system for the mining and the predicted
stream with the measure of confidence is sent back.

4 Empirical Analysis

4.1 Experimental Framework

We adopt standard statistics for measuring the performance of classifiers: the
classification accuracy (CA), Cohen’s x (Kappa) statistic, geometric mean of
recall and precision denoted F-score, and Rand index. We evaluate regression
algorithms with the mean absolute error (MAE), mean absolute percentage error
(MAPE), root mean squared error (RMSE) and Pearson correlation coefficient.
All statistics are computed using a sliding window of the most recent examples.

Additionally, for comparing the performance of two particular classifiers A
and B, we use the @Q-statistic:

0 CAs+1

=log, ———.
AP =R Gy 1
When Q4,5 > 0, classifier A performs better that B (and vice-versa).

4.2 Experimental Datasets

The stream mining tool was analyzed on four datasets from real-world problems
(Table 2). First two datasets were used to test the system’s classification perfor-
mance and the remaining two were used to test the regression prediction perfor-
mance. The datasets were fed to the stream mining methods in temporal order of
learning examples. Short description of these datasets is as follows:
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Table 2. Temporal datasets used in the analysis. (Hz/3600 is the frequency of the data
in examples per hour, while A is the size of the prediction window.)

Dataset Attributes Examples Hz/3600 A

. . Airline flight delays (2008) 841 21600 ~10 0

Classification Electricity market price (~1996) 6+1 17520 2 0

. Electric energy consumption 1+1 16200 1 24
Regression

Solar energy forecast (1994-2007) 16+ 1 5113 2471 0

Flight delay prediction within the USA. The dataset? was published at
the Data Expo Competition in 2009 and represents an actual non-stationary
streaming real-world problem. It contains flight arrival and departure de-
tails for all the commercial flights within the USA between 1987 and 2008.
The goal is to predict a flight delay based on the available attributes that
include date and time, carrier id, flight number, actual elapsed time, origin,
estination, distance, and diverted,

Electricity market price in New South Wales. The dataset was col-
lected from the Australian New South Wales Electricity Market. In this
market, prices are affected by demand and supply of the market; they are
set every five minutes. The dataset contains 45,312 instances. The attribute
set consists of one temporal and five other attributes (price, demand, trans-
fer, day, period), and a binary class that specifies whether the price is higher
than the moving average of the last day. We supplemented the dataset with
attributes that describe daily and weekly periodic cycles;

Electric energy consumption of Portugal. The prediction goal is to con-
tinuously predict the electricity load demand for a certain region of Portugal
for the next day, based on a stream of measurements that arrive in one hour
intervals. Examples contain only one temporal attribute. We constructed ad-
ditional attributes that describe daily, weekly and yearly periodic cycles; and
Solar energy forecast for Oklahoma. The “Solar energy forecast for
Oklahoma” dataset deals with predicting the average daily incoming solar
energy at 98 Oklahoma Mesonet sites based on data between 1997 and 2004.
The solar energy was directly measured by a pyranometer at each Mesonet
site every 5 minutes and summed from the sunrise to 23:55 UTC of the date
listed in each column. Numerical prediction data include predictions of 11
ensemble members for various time steps.

4.3 Results and Discussion

To objectively evaluate our approach, we performed the experiments in the fol-
lowing three iterations:

2 http://stat-computing.org/dataexpo/



Automatization of the Stream Mining Process 419

Table 3. Classification performance for prediction of the airline flight delays within
the USA.: classification accuracy (CA), (Kappa) statistic, F-score, and Rand index.
Statistics are computed with a sliding window of 10000 examples.

Algorithm K CA F Rand

System META 0.1562 57.81% 0.5781 0.5781
RULES 0.1526 57.71% 0.5755 0.5771
Expert BAYES 0.1455 57.28%  0.5728 0.5728
ENSMB  0.1449 57.25% 0.5725 0.5725
Best on raw data 0.1381 56.91%  0.5691  0.5691

1. As a baseline approach, we utilized our stream mining system without any
expert system support and measured the results. Only raw streaming data
without any preprocessing and attribute aggregation were used. We selected
the results of the best performing stream mining algorithm (selected from
those described in Section 3.3) as the reference point for the following iter-
ations. These results are denoted with “Best on raw data” in Tables 3-6.

2. In the next step we executed tests by fully involving the stream mining
experts in method selection, attribute aggregation, parameter setting and
trimming. The obtained results are denoted with “Expert” in Tables 3-6;
we consider them as the golden standard of what our expert system can
optimally achieve.

3. In the last iteration, we repeated the experiments using a support of the
proposed expert system. Expert system’s results are denoted with “System”
in Tables 3-6.

The results for each of four used datasets are shown in tables, which show
the results of our expert system (System) with respect to the baseline approach

01

======= System—Expert
System—Raw
Expert—Raw

1 1 1 1
0 5000 10000 15000 20000
Instance

Fig. 3. Q-statistic for comparing three prediction systems for the airline flight delays
within the USA. Positive values of the curve denote better performance of algorithm
A in pair A-B.
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Table 4. Classification performance for prediction of the electricity market price
in New South Wales: classification accuracy (CA), (Kappa) statistic, F-score, and
Rand index. Statistics are computed with a sliding window of 10000 examples.

Algorithm K CA F Rand

System META 0.5271 76.49% 0.7650  0.7649
BoOST 0.5287 76.61% 0.7660 0.7661
Expert ENSMB  0.4540 72.81% 0.7283 0.7281
TREE 0.4333 71.70% 0.7174 0.7170
Best on raw data 0.2494 62.80% 0.6273  0.6280

Table 5. Regression performance for prediction of the electricity consumption of
Portugal: mean absolute error (MAE), mean absolute percentage error (MAPE), root
mean squared error (RMSE) and Pearson correlation coefficient. Statistics are com-
puted with a sliding window of 8760 examples.

Algorithm MAE MAPE RMSE Pearson

System META 82.79 8.73% 122.96 0.9339
KNN 81.54 8.58% 121.27 0.9357
Expert pisct 111.17 12.01%  148.39 0.9044
ADDIT 167.78 19.68%  206.66 0.8023
Best on raw data 326.75 38.49%  388.90 —0.0124

Table 6. Regression performance for prediction of the solar energy forecast for
Oklahoma: mean absolute error (MAFE), mean absolute percentage error (MAPE),
root mean squared error (RMSE) and Pearson correlation coefficient. Statistics are
computed with a sliding window of 1000 examples, while MAE and RMSE are in 10°.

Algorithm MAE MAPE RMSE  Pearson

System META 1.8949 17.19% 2.5072 0.9326
KNN 1.8949 17.19% 2.5072 0.9326
Expert RULES 3.4086 32.51%  4.6129 0.7362
TREE 5.8087 57.19%  6.8556 —0.1006
Best on raw data 1.9261 17.87%  2.6390 0.9240

(Raw) and stream mining experts (Expert), and figures, which display evolutions
of the Q-statistic or MAPE over time. The detailed results are as follows:

— Flight delay prediction within the USA. The results are shown in
Table 3 and Figure 3. We can observe that the results for System outperform
the Expert (green curve), while in the long run the Expert slightly prevails.
Both System and Expert perform better than Raw.
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Fig. 4. Predictions of three systems on the electricity consumption of Portugal.
Note that the results for System and Expert overlap.
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Fig. 5. Predictions of three systems on the solar energy forecast for Oklahoma
(the values are in 106). Note that the results for System and Expert overlap.

— Electricity market price in New South Wales. The results are shown
in Table 4. We can observe that in this case System performs slightly worse
than Expert, while both perform considerably better than Raw.

— Electric energy consumption of Portugal. The results are shown in
Table 5 and Figure 4. As with the previous dataset, we can observe that
System performs slightly worse than Expert, while both perform consider-
ably better than Raw. We can also notice weekly periods in Figure 4, which
reflect different electricity demands on weekends.

— Solar energy forecast for Oklahoma. The results are shown in Table 6
and Figure 5. We can observe that System initially performs slightly worse
than Expert, while in the long run the difference is negligible. However,
neither performs considerably better than Raw. We can also notice yearly
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periods in Figure 5, which reflect seasonal solar radiation levels. In compari-
son with Kaggle competition results (http://www.kaggle.com), performance
of both System and Expert (and Raw) is comparable (the same order of
MAPE magnitude).

The results show that our expert system often performs similarly to stream
mining experts. In the “Airline flight delay prediction” and the “Electricity mar-
ket price in New South Wales” datasets, expert system performed almost the
same as the stream mining experts, in the former it initially even outperformed
them. We can attribute this to use of the knowledge base, using which the expert
system was able to quickly select a well-performing mining method, opposed to
the approach of experts that included extensive initial testing of various param-
eters. Nevertheless, in the long run, the experts’ predictions performed better.

The expert system performed better that the baseline approach (best stream-
ing method on raw data), as we expected, in three out of four datasets. It
achieved poor performance only on the “Solar energy forecast for Oklahoma”
dataset, which turned out to be a difficult prediction problem even for the stream
mining experts who achieved poor performance as well. The reason for this is
that due to weather factors which cause that the last year’s data on the same
day may be considerably different from this year’s.

5 Conclusion

In this paper, we focus on data that comes in streams. Mining streams has
additional challenges as data is only available limited amount of time and —
as a whole — cannot be stored for later use. We show that the stream mining
process which normally depends on both the streaming data and data mining
experts, can be fully automatized within an information system encoding the
experts’ knowledge. Although implemented expert knowledge is limited both in
expressiveness and functionality, abundance of data in data streams seems to
largely compensate this gap, as in the long run, experts’ and expert system’s
performance is (at least in our experiments) quite similar.

In our work we wished to emphasize that solving data mining problems typ-
ically requires involvement of individuals with expertise in data mining tech-
niques and approaches. This alone puts some limitations on the application of
data mining in business practice as such knowledge is rarely available among
employees and needs to be outsourced. Besides the obvious financial limitations
(such expertise is costly), and, especially in stream mining, there is an ongoing
need for experts’ involvement due to data streams’ dynamic nature. Therefore,
each data mining problem needs to be tackled independently as there seems to
be no general solution. The above indicates that the data mining is not fully
exploited in business environments and computerized within their supporting
information systems. This is a pity, since many information systems today have
access to immense amounts of current and historical data.

The results of our study show that the stream mining expertise has become
routinized enough to be captured in a form of explicit knowledge and thus
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computerized. We believe that this represents an important finding which might
impact the level of possible automatization of problems known from the Big
Data, Internet of Things and similar domains.
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