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Large network community 
detection by fast label propagation
Vincent A. Traag 1* & Lovro Šubelj 2

Many networks exhibit some community structure. There exists a wide variety of approaches to detect 
communities in networks, each offering different interpretations and associated algorithms. For large 
networks, there is the additional requirement of speed. In this context, the so-called label propagation 
algorithm (LPA) was proposed, which runs in near-linear time. In partitions uncovered by LPA, each 
node is ensured to have most links to its assigned community. We here propose a fast variant of LPA 
(FLPA) that is based on processing a queue of nodes whose neighbourhood recently changed. We test 
FLPA exhaustively on benchmark networks and empirical networks, finding that it can run up to 700 
times faster than LPA. In partitions found by FLPA, we prove that each node is again guaranteed to 
have most links to its assigned community. Our results show that FLPA is generally preferable to LPA.

Networks are relevant in various scientific fields, ranging from social networks in sociology to metabolical 
networks in biology. There are various techniques to try to improve our understanding of networks. One such 
technique is to cluster the nodes of a network, such that nodes within a cluster are relatively densely connected 
while they are relatively sparsely connected between clusters. There is a wide variety of clustering approaches 
to networks, such as  modularity1 and stochastic block  models2 and approaches based on dynamical processes 
on  networks3, such as random  walks4. Sometimes, a similar approach can be solved in various ways. For exam-
ple, when modularity was first proposed, it used a cutting approach based on  betweenness1. New algorithms 
were continuously proposed, either improving the speed of the algorithm or the quality of the partition. This 
includes a fast greedy  approach5, a slower simulated annealing  approach6, a faster algorithm based on extremal 
 optimisation7, a fast hierarchical multi-level method, known as the Louvain  algorithm8 which was most recently 
improved upon in the Leiden  algorithm9. Most of these algorithm can also optimise different quality functions, 
such as the Constant Potts  Model10.

A technique that takes a heuristic approach is the label propagation algorithm (LPA)11. Its foremost focus is on 
speed, trying to find clusters in as little time as possible. Simply put, LPA works by iteratively updating the label of 
each node to a label that is most common among its neighbours. We here propose a fast variant of LPA (FLPA), 
which can potentially run up to hundreds of times faster than LPA. This allows to cluster even larger networks 
in even less time. We consider this to be useful as a first initial look at a network, although other methods are 
arguably more robust and  preferable12. The results of LPA are only local minima of a global quality function for 
which the optimum is simply placing all nodes into a single  community13. Other quality functions may be more 
informative of any structure in the network.

We first briefly review LPA and introduce the fast variant FLPA in the next section. We then briefly analyse the 
performance of LPA and FLPA theoretically, followed by experimental analyses on both synthetic and empirical 
networks.

Label propagation algorithm
We now introduce the label propagation algorithm (LPA)11 more formally. For a more detailed review of label 
propagation algorithms, we refer the reader to literature  reviews12,14.

Let G = (V ,E) be an undirected multigraph with nodes V  and edges E, where there are n = |V | nodes and 
m = |E| edges. Let A be the adjacency matrix of graph G, such that Aij is the number of edges between i and j, 
with Aij = 0 if and only if nodes i and j are not connected (i.e. (i, j) /∈ E ). The implementation of LPA is quite 
straightforward. Let ci be the label of node i ∈ V  . Typically, each node is initially labelled differently, i.e. ci = i 
for all i ∈ V  . At each step, we take a random i ∈ V  and change its label to the majority in its neighbourhood. 
In more detail, we do the following. For a specific node i, we count how many neighbours have label c as 
nc =

∑

j∈V Aijδ(cj , c) , where δ(cj , c) is the Kronecker delta function such that δ(cj , c) = 1 if cj = c and 0 otherwise. 
We then consider the set of most frequent labels {c} = argmaxc nc . We randomly sample uniformly from the 
set of most frequent labels {c} a label c∗ and update the label ci = c∗ . We repeat these steps over all nodes in V  . 
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After having looped over all nodes, we check whether all labels are among most the frequent, whether the label 
is maximal. If any label is not maximal, we perform another iteration over all nodes, until all labels are maximal. 
This algorithm is summarised in Algorithm 1.

This version of the label propagation is also referred to as the asynchronous implementation of label 
 propagation11. The synchronous implementation of label propagation showed potential problems with (near) 
bipartite networks and some other networks, resulting in oscillations of labels. We therefore do not consider the 
synchronous implementation, and limit the discussion to the asynchronous implementation.

After LPA terminates, it is guaranteed that the label ci of each node i ∈ V  is maximal. That is, 
nci = maxc

∑

j∈V Aijδ(cj , c) . This is trivial to prove, since LPA continues to process nodes until all labels are 
maximal. In the original introduction of  LPA11, they observed that this is close to the definition of “communities 
in the strong sense” as introduced by Ref. 15.

The overall time complexity of a single iteration over all nodes in LPA is O(m) . The number of iterations 
necessary before convergence is not known theoretically. It was observed that generally only a few iterations 
suffice to have most labels consistent with their final  labelling11. However, there are no clear results for the overall 
runtime complexity of LPA.

Retention strategy. LPA stops iterating whenever the labels of all nodes are maximal. The original imple-
mentation of  LPA11 simply considered always updating the label with a randomly selected maximal label. Later, a 
so-called retention strategy was suggested: update the label only if it is not  maximal16. This has one great benefit: 
we can simply keep track of whether a label was updated during the iteration, and if so, we continue iterating 
over all nodes. This means it is not necessary to check for maximal labels after an iteration over all nodes, making 
the implementation more efficient. The retention strategy is summarised in Algorithm 2.

In addition, this retention strategy introduces more stability, because it does not continuously sample from 
competing maximal labels for a single node like the original LPA does. LPA sometimes shows the appearance 
of a “giant”  cluster11,17 which might be related to the quality function which it implicitly  optimises13. Indeed, 
merging neighbouring clusters does not alter the label maximality, so that any arbitrary combination of clusters 
in principle will still meet the original stopping criteria. The retention strategy might prevent the method from 
finding such “giant”  clusters16.

Some empirical observations in the literature noted that we can expect roughly 1.03m0.23 iterations for the 
retention strategy on empirical  networks18. This leads to an overall time complexity of about O(m1.23) for the 
retention strategy.

Fast label propagation algorithm. We now introduce the fast label propagation algorithm (FLPA). It is 
based on the same principle that is used for the fast local move in the Leiden  algorithm9. Similar to LPA, each 
node i ∈ V  has an associated label ci , and we use a similar majority update rule. However, instead of checking 
after an iteration whether all labels are maximal, or by considering whether labels are updated, as done in the 
retention strategy, we maintain an explicit queue of nodes Q that should be considered. If ci of node i is changed, 
we append some of its neighbours Ni = {j | (i, j) ∈ E} to the queue. In particular, we add each neighbour j ∈ Ni 
to the queue that has a label different from the new label of i, cj  = ci and does not yet belong to the queue j  ∈ Q . 
At each step, we pop the node from the beginning of the queue, and we continue to process all nodes until the 
queue is empty. Hence, instead of iterating over all nodes if a label is changed, we only consider nodes in whose 
neighbourhood a label changed. This greatly reduces the number of nodes that we consider, making the algo-
rithm even faster. The algorithm is summarised in Algorithm 3.

We now prove that FLPA provides the same guarantee as LPA, namely that after FLPA terminates, it is guar-
anteed that the label ci of each node i ∈ V  is maximal. We first observe that a node i that is not in the queue will 
have its label ci as its maximal label. That is, nci = maxc

∑

j∈V Aijδ(cj , c) . This clearly holds when node i was 
processed. If node i is currently not part of the queue, we can discern two cases. In the first case, no labels in its 
neighbourhood have changed at all. In this case, the label ci continues to be the maximal label. In the second 
case, the label of a neighbour j ∈ Ni changed. It must then hold that cj = ci , since otherwise i should have been 
added to the queue. In that case, the number of labels in the neighbourhood of i that equal ci increased. If nci was 
maximal prior to node j changing its label, it continues to be maximal. Hence, ci continues to be the maximal 
label as long as node i is not part of the queue. If the queue is empty, the label ci of each node i is guaranteed to 
be the maximal label, similar to LPA.

Earlier literature also suggested a speedup of LPA in a similar  fashion19,20. However, they seem to have taken 
a slightly more complicated approach, either introducing additional heuristics or requiring the algorithm to 
check whether a neighbour might be updated or not. Our approach is easier to implement, and seems to result 
in even greater speedups.

Results
To understand better the differences between LPA, its retention alternative, and FLPA, we analysed three theo-
retical graphs: a complete graph, a star graph and a cycle graph. In addition, we also analysed the differences 
in results in practice. We ran benchmarks on five different types of synthetic networks and on twelve different 
empirical networks. In addition to comparing LPA, its retention alternative, and FLPA, we also compare with 
the Leiden algorithm, which is one of the fastest available  algorithms9. We use the Leiden algorithm to optimise 
for modularity. We compare both the speed and the resulting partitions.

We first discuss our theoretical results. We then present the results for the synthetic  networks21. Following 
that, we discuss the results for the empirical networks.
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Theoretical analysis. LPA performs a number of iterations over n nodes. Each potential update of a label 
for a node i has a complexity of �(ki) , where ki is the degree of node i, and therefore the total complexity of a 
single iteration is linear in the number of edges �(m) . If the number of iterations does not scale with n, we simply 
have linear complexity �(m) . Presumably, however, the number of iterations will increase with n, but it is not 
clear exactly how. The complexity also relates to the resulting partitions, since finding a partition of n/2 equally 
weighted clusters will most likely take less time than finding a partition consisting of a single cluster. The same 
reasoning applies to the retention variant and FLPA.

For some specific graphs we can analyse the complexity in more detail. We analyse the algorithms for three 
theoretical graphs: a complete graph, a star graph and a cycle graph. We summarise the runtime complexities 
in Table 1.

Complete graph. Let us start by analysing a complete graph with n nodes and m =

(

n
2

)

 edges. All three algo-

rithms, LPA, its retention variant, and FLPA, will find a partition consisting of a single cluster within a single 
iteration of all nodes. Suppose on the contrary that a partition consists of k > 1 clusters, while the label of each 
node is maximal. We prove by contradiction that this is not possible. With k clusters, there are k labels, and each 
label c occurs nc times. Now suppose that nc ≥ nd for a pair c  = d . Then each node with label d has only nd − 1 
neighbours with label d, and since nc > nd − 1 its own label d is not maximal. Therefore nc < nd for all c and d, 
which is impossible, and there can be only one cluster.

Let us now consider the complexity. Initially, each algorithm starts with a singleton partition such that ci = i . 
Let us analyse the first node that is considered in each algorithm. Without loss of generality, we can label this node 
1. Each node has n− 1 neighbours, and initially each node is in its own cluster, meaning there are n− 1 unique 
labels for node 1, each of which occurs only once. Since the current label c1 = 1 of node 1 is not yet maximal, 
a random label will be chosen by each algorithm, say label i, and we set c1 = i . Then, when we consider node 2 
(assuming i  = 2 ), there are n− 2 unique labels, of which n− 3 occur once and one label (namely label i) occurs 
twice. Thus, there is only a single maximal label i, and node 2 will switch to label i. Subsequently, all remaining 
nodes will also switch to label i, and hence all nodes will be assigned label i in the end.

All three algorithms consider n nodes in this case. However, both LPA and its retention variant will consider 
again n nodes for updating, or checking for maximality. FLPA does not need to do this, and the queue will be 
empty after considering all n nodes. This means that the total runtime in this case is �(2m) for LPA and reten-
tion, and �(m) for FLPA.

There is an exception, namely if i = 2 , which occurs with probability 1
n−1 . Let us consider what happens to 

node 2. If i = 2 , its current label c2 = 2 is maximal, since it has n− 1 unique labels, each of which occurs only 
once, but now this includes its own label 2. The retention strategy will not draw a random label, since its current 
label is already among the maximal labels of its neighbours. Therefore, for retention, all remaining nodes will 
simply switch to label 2 and we end up with a complexity of �(2m) . However, in LPA and FLPA, a random label 
is drawn from all maximal labels. With probability 1

n−1 , label 2 is drawn. In this case, all other remaining labels 
also change to label 2 and all labels are maximal after a single iteration. With probability 1− 1

n−1 , label j  = 2 is 
drawn. In this case, we need to perform another round in LPA since c1 = 2 is not maximal, and in FLPA node 
1 is added to the queue again.

The probability of needing a second iteration over all nodes for LPA is then

which goes to 0 for n → ∞ . This covers only the first iteration, and there will be similar probabilities involved 
in each subsequent iteration, but clearly those probabilities will equally go to 0. Therefore, the expected runtime 
for LPA is close to �(2m) , although slightly higher.

If nodes continuously select the label of the node that will be considered next, as in c1 = c2 , there will con-
tinue to be a single label that occurs twice, while all other labels occur once. In FLPA, if a node chooses the 
label of the node that will be considered next, i.e. ci = ci+1 for i > 1 , we add the node i − 1 that was previously 
considered to the queue. For each node, this happens with probability 1

n−1 , which leads to an expected number 
of additional nodes of

1

n− 1

(

1−
1

n− 1

)

,

Table 1.  Expected runtime complexity of LPA, its retention variant and FLPA for two theoretical graphs.
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Since the degree of each node is equal to n− 1 , the total expected runtime for FLPA is �
(

m+ 1
n−2

)

.

Star graph. We now analyse a star graph of n nodes, with a single node in the center and n− 1 leaf nodes con-
nected to the central node, with in total m = n− 1 edges. Similar to the complete graph, all three algorithms will 
find a partition consisting of a single cluster. Clearly, the leaf nodes cannot have a different label as the central 
node, since that is their only neighbour. So, by definition, all leaf nodes must have the same label as the central 
node, and hence all nodes have the same label.

Regardless of the updating order, all leaf nodes will always adopt the label from the central node in each algo-
rithm. The only question is what happens for the central node. If the central node is selected first, it will simply 
choose a random label from the leaves, and all leaves will adopt that label. If the central node is selected third or 
later, it will not change its label because its own label is then by definition the only maximal label. Thus, in both 
these cases, only n nodes are considered, and both LPA and retention perform another pass over all nodes to 
check for maximality (in the case of LPA) or because there was a change (in retention), resulting in a total runt-
ime of �(2m) . In FLPA, no nodes are ever added to the initial queue of n nodes, resulting in a runtime of �(m).

Let us examine what happens when the central node is selected as the second node to update. This only hap-
pens with probability 1

n−1 and is therefore unlikely to have much effect on the overall expected runtime. For the 
retention strategy, if the central node is considered second, this means that the first node has already adopted 
the label of the central node and the retention strategy will not update its label. Thus, retention is not affected 
by this and maintains a runtime of �(2m).

In LPA, if the central node is considered second, it will choose the same label as its current label with prob-
ability 1

n−1 . In this case, after all the remaining nodes have also updated their label, all nodes have identical 
labels and LPA terminates. If a different label is selected, all other n− 2 leaf nodes also adopt that label. In a 
subsequent iteration, no node except the first leaf node initially considered will update its label. Therefore, LPA 
will converge in at most two iterations, with the second iteration occurring with probability 1

n−1
n−2
n−1 , resulting 

in a total expected runtime of

Finally, in FLPA, if the central node is considered second and it chooses a label different from its current label, 
the first leaf node initially considered will be added to the queue, and nothing more. Hence, the total expected 
runtime is

Cycle graph. Let us now consider a cycle graph of n nodes. In contrast to the complete graph and the star graph, 
each algorithm now results in different partitions. In all three algorithms, each node whose neighbours have not 
yet been updated, simply chooses the label of a random neighbour. The distribution of cluster sizes is difficult to 
analyse exactly. Regardless, all labels are maximal only if all clusters are larger than a single node. This is clear for 
the nodes in the interior of a cluster, since their label is identical to that of their two neighbours. For the nodes 
at the border of a cluster, their current label is among the maximal labels. At the borders of clusters is where dif-
ferences between the individual algorithms emerge.

For the retention strategy, no updates will be considered anymore. Therefore, it will quickly settle on any 
partition that does not include a cluster of size one.

For LPA the picture is a bit different. At each border of two clusters, the node updates its label by randomly 
choosing between the label on its left and the label on its right. Thus, as long as there is still a cluster of size one 
in the partition, all borders will continue to change in LPA, unlike for the retention strategy. Although clusters 
of size one may disappear, they may also newly appear when clusters of larger size shrink.

For FLPA the picture is again slightly different. Whereas LPA simply continues to move around all nodes, and 
thus moves around all borders as long as there is a cluster of size one, FLPA has more local dynamics. Suppose 
that FLPA updates the label of a node at the border of a cluster. If this happens, its neighbour in the old cluster is 
added to the queue (unlike its neighbour in the new cluster). So with probability 12 a neighbouring node will be 
updated, and this happens again with probability 12 et cetera. Continuing this reasoning, the expected number 
of moves resulting from a single border is

Finally, a node in a cluster of size one is never maximal, so FLPA will continue to run until there are no more such 
clusters. The difference, however, is that only nodes in such clusters can be moved, rather than always considering 
all nodes at the borders like LPA does.

In summary, the retention strategy will most likely detect the most fine-grained clusters, LPA the least fine-
grained clusters, and FLPA somewhere in between. Experimental simulations suggest that retention settles on 
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clusters with 2.72 nodes and FLPA on clusters with 4.11 nodes, whereas the cluster size increases with the number 
of nodes n for LPA. In terms of the runtime, retention is then expected to converge the fastest, LPA the slowest, 
and FLPA somewhere in between. Nonetheless, retention will still consider updating all n nodes, even when 
moving only a single node in a cluster of size one. So, in total, the runtime of FLPA might still be lower than the 
runtime of the retention strategy.

Experimental results. We now present some experimental results based on implementations of LPA, its 
retention variant, FLPA, and the Leiden algorithm for optimising modularity. For all test results, we report 
averages and standard deviations of 2 000 runs unless explicitly stated otherwise. All results were run on Dell 
PowerEdge M620 computing nodes with Intel E5-2697 CPUs.

Synthetic networks. As is clear, for all networks FLPA is always faster than LPA (Fig. 1). For the largest networks 
with 100 000 nodes, FLPA is somewhere between 3–10 times faster than LPA. On Erdős-Rényi (ER) graphs, 
LPA is only about twice as slow as FLPA, which is comparable to the runtime of the Leiden algorithm. On two-
dimensional geometric graphs, LPA is even 3–4 times slower than the Leiden algorithm, which in turn is still 
about 3–4 times as slow as FLPA. We tested the algorithms on a stochastic block model (SBM) of 100 groups and 
a mixing parameter of µ = 0.6 with average degree of �k� = 10 , such that each node has about 4 links within its 
own group and 6 scattered across the other groups. For this case, LPA is again about twice as slow as FLPA, which 
is again about 1.5 times faster than the Leiden algorithm.

The comparison between FLPA and the retention variant of LPA is more complex. For some networks, the 
retention strategy alternative is faster, while for other networks FLPA is faster. However, in cases when the reten-
tion strategy is faster, it typically fails to perform well. For instance, in ER graphs, both LPA and FLPA find a single 
large cluster (Fig. 2 left), as expected based on earlier  literature11, but the retention strategy simply terminates 
almost immediately, finding a partition that closely resembles the singleton partition of each node in its own 
cluster. In SBM graphs, both LPA and FLPA typically find partitions that are close to the planted partition, while 
the retention strategy finds many small clusters within each group of the planted partition (Fig. 2 right). This is 
understandable, since every group is essentially an ER graph internally. In short, the retention strategy is faster 
simply because it stops very soon after having found some very small community structure.

The overall scaling of both LPA and FLPA seems to be near linear, although there might be some super-linear 
factors. For all algorithms, we experimentally estimate runtime complexities of the form amb + c using the 
Levenberg-Marquardt algorithm, where m is the number of edges and the coefficient b is of central interest. For 
ER graphs, LPA scales as O(m1.58) and FLPA as O(m1.49) , while the retention strategy scales as O(m1.15) . As we 
already noticed, in ER graphs, retention finds very small clusters, which explains its lower complexity. On forest 
fire graphs and geometric graphs, FLPA is much faster than LPA and the retention strategy. Indeed, we find a 
scaling of O(m1.27) for forest fire graphs and O(m1.21) for geometric graphs for FLPA, while LPA shows a scaling 
of O(m1.67) and O(m1.57) respectively, with retention showing a scaling of O(m1.47) and O(m1.37) respectively. 
Finally, on SBM graphs, the performance of LPA and FLPA is similar to the performance on ER graphs, lead-
ing to a complexity of O(m1.53) for LPA and O(m1.64) for FLPA. For the retention strategy, the scaling cannot 
be estimated unambiguously, since it finds completely different partitions depending on the size of the graph. 
That is, for larger graphs, it tends to find more fine-grained structure within each cluster, causing it to converge 
relatively faster than for smaller graphs.

Figure 1.  Algorithm runtime for synthetic networks with increasing number of nodes n and the average degree 
�k� = 10 . (top) Erdős-Rényi random graphs, Barabási-Albert scale-free graphs, forest fire graphs with burning 
probability 0.5 and two-dimensional geometric graphs with connection radius 

√
�k�/(πn) . (bottom) Stochastic 

block model graphs with 100 groups and mixing parameter µ.
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The runtime complexity also depends on how challenging it is to find a partition. To investigate this more 
closely, we consider the runtime for each algorithm while varying the average degree 〈k〉 (Fig. 3). LPA, FLPA and 
retention all find small clusters in ER graphs with low average degree. If the degree is sufficiently large, both LPA 
and FLPA will find a single large cluster (Fig. 3 left), as also suggested by our theoretical analysis of a complete 
graph. The larger the degree, the faster both LPA and FLPA converge towards this large cluster (Fig. 3 middle). 
Ultimately, when �k� = n− 1 , the graph is a complete graph, for which our theoretical runtimes indicate that 
FLPA is about twice as fast as LPA. In contrast, the retention strategy does not show a convergence to a single 
large cluster for 〈k〉 < 25.

The overall figure is very similar for SBM graphs (Fig. 3 right). Initially, all algorithms struggle to uncover the 
planted partition. When the degree is sufficiently high, the planted partition becomes more easily recognisable, 
and the algorithms converge faster.

For SBM graphs, we also compare the detected partitions with the planted partition of 100 groups (Fig. 4) 
using the normalised mutual information (NMI)22. When we increase the mixing parameter µ (Fig. 4 left), we 
find that both LPA and FLPA are able to detect the correct partition up to a threshold. For µ = 0 all edges are 
within groups, while for µ = 1 all edges are between groups, and so increasing µ makes it more difficult to cor-
rectly detect the planted partition. For µ = n−nc

n−1  the SBM is identical to an ER graph (where nc is the size of the 
communities), although it already becomes essentially indistinguishable before this threshold due to stochastic 
 fluctuations23. Up to µ = 0.3 both LPA and FLPA detect the planted partition perfectly, for µ = 0.4 the perfor-
mance starts to degrade, and for µ = 0.5 the algorithms no longer find the planted partition at all. This closely 
resembles the results of the Leiden algorithm, which we use to optimise modularity. The retention strategy is 
never able to detect the planted partition correctly. This is mostly because it finds more fine-grained structure 
within each planted cluster. If we increase the average degree 〈k〉 (Fig. 4 middle), the retention strategy is also 
able to find the planted partition. However, the retention strategy requires a far larger degree 〈k〉 > 15 to do so 
than LPA, FLPA and the Leiden algorithm.

We also compare the differences across partitions that are detected by the different algorithms (Fig. 5 top) 
based on the normalised variation of information (VI)24. The VI of an algorithm with itself denotes the average 
VI of two runs of the same algorithm on the exact same graph. We can interpret this self-VI as a measure of 
stability: larger VI values suggest that partitions differ quite a bit from run to run, indicating a lower stability, 
while lower VI values suggest that partitions are quite similar from run to run, indicating a higher stability. For 
ER graphs, there is essentially no variation within and between LPA and FLPA, because they always find a single 
large cluster. The retention strategy, as explained earlier, typically finds some structure within ER graphs, which 
can also differ quite a bit from run to run. The Leiden algorithm also shows quite different results from run to 
run, and also finds some structure within ER graphs, which is a known result for  modularity25. For both the for-
est fire graphs and the two-dimensional geometric graphs, the three variants of LPA find relatively comparable 
structures, which differs from the partitions from the Leiden algorithm. The stability of the partitions in the two-
dimensional geometric graph of the three LPA variants is similar to the stability of the Leiden algorithm. Finally, 

Figure 2.  (left) Largest cluster size for Erdőős-Rényi random graphs and (right) the number of clusters for 
stochastic block model graphs with increasing number of nodes n and the average degree �k� = 10 . Note that the 
results for LPA are not well visible because they overlap with the results of FLPA.

Figure 3.  Algorithm runtime for (middle) Erdős-Rényi random graphs and (right) stochastic block model 
graphs with n = 105 nodes and varying average degree 〈k〉.
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on SBM graphs, the retention strategy seems to be unable to find any meaningful partition. As explained earlier, 
each group in the SBM is similar to an ER graph, where the retention strategy also finds very small substructures, 
which hence also shows up in the SBM results. In contrast, both LPA and FLPA are able to find relatively stable 
partitions that are similar to each other, and similar to the results of the Leiden algorithm, as they all detect the 
planted partition of the SBM.

Empirical networks. We now discuss the results of the empirical networks. We first tested the algorithms 
on seven large empirical networks. They vary in size, ranging from 317 080 nodes and 1 049 866 edges for the 
smallest network (com-dblp), up to 6 297 539 nodes and 16 057 711 edges (bitcoin) or 4 847 571 nodes and 
68 993 773 edges (livejournal). FLPA is between 30–700 times faster than LPA (Table 2) and between 4–15 
times faster than the retention strategy. For the largest network (bitcoin), LPA takes over 45 min on average, 
while FLPA is finished in 37 s. LPA is by far the slowest on the us-patents network, where it takes over 7 h, 
while FLPA is finished in 38 s. This may be partly due to LPA finding a much coarser partition: the largest cluster 
covers more than 38% of the nodes, and it finds about over 6 times fewer clusters than the retention alternative, 
and over 3 times fewer clusters than FLPA. This conforms to the general pattern that LPA finds the least clusters, 
FLPA finds more clusters, while the retention strategy finds even more clusters. There is no a priori reason to 
prefer larger over smaller clusters, so we cannot say whether a method would be preferable over the other based 
on this observation.

The partitions of most empirical networks themselves are similar between the three variants of LPA (Fig. 5 
bottom). Moreover, they differ similarly from the results of the Leiden algorithm. The Leiden algorithm shows 
greater VI than (F)LPA for the livejournal and twitter-sample networks. This might be related to 
the community sizes that Leiden finds, since we use it to optimise modularity, which suffers from a resolution 
 limit26. The resolution limit might lead the method to aggregate several clusters together, which may be somewhat 
arbitrary. Indeed, the Leiden algorithm using modularity typically finds an order of magnitude fewer clusters 
than LPA. As already noted earlier, for the us-patents network there is a larger difference between LPA and 
the retention variant and FLPA.

Figure 4.  Accuracy of partitions for stochastic block model graphs with n = 105 nodes and (left) varying 
mixing parameter µ , where higher µ corresponds to partitions that are more challenging to detect, or (middle) 
varying average degree 〈k〉 , and (right) small social networks with the metadata on node clusters.

Figure 5.  Distance between partitions of (top) synthetic networks with n = 105 nodes and (bottom) empirical 
networks.
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We also tested the algorithms on five small social networks with a known sociological division of nodes into 
communities (Fig. 4 right). We compare the detected partitions with the node clusters described in the Methods. 
We do not present the timing results for these networks, since they are too small for the measurements to be 
informative. Overall, the results indicate that LPA finds the partitions with the highest NMI for these networks, 
followed by FLPA and then the retention strategy. The Leiden algorithm, which optimises modularity, finds 
the worst partitions as measured by the NMI. However, the results do not differ much between the algorithms.

Discussion
Detecting communities in networks is a frequent task in network analysis. Label propagation is one of the fastest 
algorithms available. It may be useful to get an initial first look at a network. We here suggested a faster variant 
of label propagation. Fast label propagation can run up to 700 times faster than the original label propagation. 
Additionally, the same guarantees continue to hold, and results from both algorithms are largely comparable. The 
quality of the partitions that FLPA finds seem to be on par with LPA. When using label propagation, we believe 
our fast variant will bring benefits at no additional costs. Although label propagation may be useful to get a first 
look at a network, other methods may be likely to provide more accurate results. One possibility is to use FLPA 
to obtain an initial rough partition, which is then further improved by the Leiden algorithm, aiming for a specific 
objective function. Label propagation was also used to effectively and efficiently compress the Facebook  graph27 
to calculate its four degrees of  separation28. At the same time, it is quite similar to majority opinion simulations 29. 
The suggested speedup might also be relevant in the context of such applications.

Methods
Algorithm implementation. We have implemented FLPA in C in igraph and made it available in its 
Python interface python-igraph. The C source code can be found in https:// github. com/ vtraag/ python- 
igraph/ tree/ flpa, while the Python interface can be found in https:// github. com/ vtraag/ igraph/ tree/ flpa. We 
compared FLPA to the existing implementation of LPA in (python-)igraph.

Table 2.  Speedup of fast label propagation for empirical networks. Results are averages over 2 000 runs of the 
algorithms ( 1 986 runs for the bitcoin network).

Network Nodes Edges Algorithm Clusters Largest Time (s) Speedup

com-dblp 317 080 1 049 866

LPA 22 048 20.1% 185.0± 105.0 188.5×

retention 46 380 2.1% 10.6± 6.0 10.8×

FLPA 32 329 2.7% 1.0± 0.4

roadnet-ca 1 965 206 5 533 214

LPA 219 392 0.0% 940.4± 341.8 161.8×

retention 610 087 0.0% 23.2± 8.6 4.0×

FLPA 341 773 0.0% 5.8± 1.9

us-patents 3 774 768 16 522 438

LPA 53 337 38.3% 26 704.4± 12 100.4 705.2×

retention 359 233 1.4% 601.8± 273.4 15.9×

FLPA 183 476 1.8% 37.9± 12.3

foursquare 3 935 215 22 809 624

LPA 73 805 6.2% 977.3± 357.3 63.8×

retention 77 352 5.3% 117.6± 41.3 7.7×

FLPA 76 028 5.8% 15.3± 4.7

livejournal 4 847 571 68 993 773

LPA 59 742 69.4% 2 248.1± 1 259.9 30.2×

retention 149 555 60.5% 959.6± 477.0 12.9×

FLPA 93 501 65.5% 74.4± 26.3

twitter-sample 5 384 162 16 011 444

LPA 16 011 55.1% 1 343.5± 544.6 93.0×

retention 20 651 47.5% 92.8± 38.9 6.4×

FLPA 18 560 51.8% 14.5± 4.9

bitcoin 6 297 539 16 057 711

LPA 42 388 50.9% 2 937.7± 1 077.3 80.3×

retention 1 059 801 10.7% 597.1± 522.6 16.3×

FLPA 247 404 24.3% 36.6± 13.0

https://github.com/vtraag/python-igraph/tree/flpa
https://github.com/vtraag/python-igraph/tree/flpa
https://github.com/vtraag/igraph/tree/flpa
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Empirical networks. The large empirical networks from Table 2 are part of the Netzschleuder repository 
and can be downloaded from https:// netwo rks. skewed. de. All networks have been reduced to their largest con-
nected component. The com-dblp is a co-authorship network extracted from the DBLP database in  201230, 
the roadnet-ca is the road network of  California31, the us-patents is the U.S. patent citation network 
from 1975 to  199932, the foursquare network represents check-in events on Foursquare from April 2012 to 
September  201333, the livejournal is an online social network of the LiveJournal members in  200634, the 

https://networks.skewed.de
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twitter-sample is a sample of the Twitter follower network extracted in  201235, and the bitcoin is a 
network of Bitcoin transactions from January 2009 to April  201336.

The small social networks from Fig. 4 are either part of the Netzschleuder repository or available as supple-
mentary material from Ref.37. The karate is a friendship network among members of a university karate club 
divided into two  factions38 (34 nodes, 78 edges). The dolphins is a social network of frequent associations 
observed among dolphins living off New  Zealand39, with a sociological division of dolphins into two groups (62 
nodes, 159 edges). The football network represents American football games between U.S. colleges during 
the 2000 regular  season40, with each college assigned to one of twelve conferences (115 nodes, 616 edges). The 
school-day1 and school-day2 networks encode face-to-face interactions between children and teachers 
in a French elementary school on two consecutive  days37, where the metadata contain the assignment of children 
to 10 classes. Following the original study, we only include edges between individuals who interacted for at least 
2 minutes (236 and 238 nodes, 1 956 and 2 177 edges, respectively).

Data availability
 The code created for the current study is implemented in the igraph library, available from https:// github. 
com/ vtraag/ igraph/ tree/ flpa. The datasets analysed during the current study are available in the Netzschleuder 
repository, https:// netwo rks. skewed. de, or via references in the published article.
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