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Abstract. Community detection in social and other 

networks is one of the important problems for many 

applications. Label propagation has proven to be one of 

the most scalable methods for detecting communities in 

large complex networks. Rapid development of modern 

graphics processing units (GPUs) has allowed a 

significant increase in computing power. In this paper, 

we present a GPU implementation of synchronous label 

propagation method. We observed speedups over 

sequential implementation in the range of 3-50 times for 

small networks to 50-300 times for larger networks with 

thousands of nodes. The results of the analysis are 

briefly discussed with an emphasis on benefits and 

drawbacks of using GPUs for community detection. 

1 Introduction 

Complex real-world systems in nature, society, and 

technology can be modeled with networks (graphs). 

Nodes of the network represent different entities, while 

edges represent connections between them. Different 

examples exist, such as web pages on the Web 

connected by hyperlinks, social networks consisting of 

people connected through various degree of friendship, 

co-authorship networks in scientific production, etc. [1]  

 Many of these networks consists of smaller modules 

with denser local structure, called communities [2]. 

Communities are intuitively defined as groups of nodes 

densely connected within and only loosely connected 

with the rest of the network. Community detection is 

significant for understanding of complex systems in 

sociology, biology, and computer science, as members 

of the community usually play similar role in the system 

[3]. Various algorithms for community detection have 

been proposed in the past. Rather comprehensive survey 

of those algorithms can be found in [3, 4]. On the other 

hand, due to scalability issues, only a minority of these 

algorithms can be applied to large real-world networks 

with millions of nodes and edges. For this reason, label 

propagation [5] and its variants [6] are often used for 

community detection. 

 The other significant issue in processing of large 

real-world networks is execution time. Execution time 

can be decreased using modern central processing units 

(CPUs) and graphics processing units (GPUs) which 

offer significant amount of parallelism [7]. Modern 

CPUs are multicore processors, consisting of dozens of 

cores that are able to execute program code 

concurrently, while contemporary GPUs are manycore 

accelerators with hundreds or thousands of cores 

available for execution. CPUs and GPUs are usually 

combined in a heterogeneous system, where compute- 

intensive parts are offloaded to the accelerator for fast 

execution. In that sense, extracting and mapping 

parallelism from existing problems becomes more and 

more important in different fields of research. 

 Computational efficiency and application of the 

community detection methods to very large networks 

have been studied in the open literature. Distributed 

community detection approaches have been presented in 

[8, 9], while experiences with community detection on 

multicore and GPU architectures can be found in [10].  

 In this paper, we have implemented and evaluated 

synchronous label propagation algorithm (LPA) on the 

GPU using NVIDIA CUDA programming model. 

Parallel implementation of LPA is tested and compared 

to its sequential counterpart with several artificial and 

real-world workloads. We observed significant 

speedups over sequential implementation and present 

our experiences with porting LPA on the GPU. 

 The rest of the paper is organized as follows. The 

second section presents a short overview of community 

detection algorithms with the emphasis on LPA. In the 

third section, we give a short overview of GPU 

architecture and CUDA programming model. 

Implementation details are given in the fourth section, 

while experimental results are discussed in the fifth 

section. Conclusion and directives for future work are 

given in the final section.   

2 Community detection in graphs 

Let the network be represented by a simple undirected 

graph G(N,E), where N is the set of nodes and E is the 

set of edges. Depending on the specific application or 

analyzed system, different definitions of community 

exist. Stricter definitions, such as cliques, n-cliques, n-

clans, etc. are mostly used in social network analysis 

[1]. Most of the definitions are based on the premise 

that members of the community are more densely 

connected within than with the rest of the network [3]. 

Communities can be defined as special case of clusters 

of nodes found in real networks. In this paper we use the 

terms community and cluster as synonyms.  

 Sometimes, intra-cluster and inter-cluster densities 

are used in the definition. Let C be the subgraph of G. 

Intra-cluster density of the subgraph C can be defined as 

the ratio between the number of internal edges of C and 

the number of all possible internal edges. Similarly, 

inter-cluster density of the subgraph C can be defined as 

the ratio between the number of edges running from the 

vertices of C to the rest of the graph and the maximum 
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number of inter-cluster edges possible. For C to be a 

community, intra-cluster density is expected to be 

appreciably higher than average density of the network. 

Many community detection algorithms try to find a 

good compromise between high intra-cluster and low 

inter-cluster density in order to find quality partitioning. 

Quality of cluster partitioning is often evaluated through 

modularity [11] and conductance [12] measures. 

 As mentioned before, numerous methods are used 

for community detection. Girwan and Newman [2] 

described an algorithm for hierarchical clustering. The 

algorithm iteratively removes the edge with the highest 

edge betweenness. Due to its high time complexity in 

the order of O(N2E), it is not practical for networks with 

more than several thousand nodes. Louvain method [13] 

is based on modularity maximization, but it has 

problems with quality of partitions.  

 Label propagation algorithm [5] is a simple, local-

based method for community detection. Each node in 

the network is assigned a unique label. Communities are 

found by iteratively propagating labels among nodes in 

such way that each node adopts the label shared by most 

of its neighbors. Let wnm be the weight of the edge 

between nodes n and m, cn denote the community label 

of node n, and N(n) denotes the set of its neighbors. In 

each iteration, the node adopts the label shared by most 

of its neighbors, takin into account edge weights: 

 

 (1) 

 

Nl(n) is the set of neighbors of n that share common 

label l. The labels are propagated quickly in the denser 

areas of the network, and densely connected sets of 

nodes form a consensus on some particular label after 

only a few iterations [5, 14]. Final communities are 

obtained when algorithm converges, as connected sets 

of nodes sharing the same label. Time complexity is 

nearly linear O(N). 

 The main issues with LPA are convergence 

problems for some types of networks. The algorithm 

described above uses synchronous propagation 

(updating) of labels, where each node’s label in iteration 

i is updated using labels of its neighbors in iteration i-1. 

For that reason, it can produce oscillation of labels for 

some network configurations, e.g. bipartite graphs. To 

ensure convergence, asynchronous updating of nodes is 

proposed in [5]. In such method, nodes are updated 

sequentially in some random order. On the other hand, 

introduction of randomness hampers the robustness of 

the algorithm, and consequently also the stability of the 

identified community structure. Some authors [15] 

propose semi-synchronous propagation, based on graph 

coloring and synchronous propagation, which eliminates 

convergence problems. However, graph coloring 

problem introduces non-trivial time complexity in the 

algorithm.  

 The other significant problem of LPA that affects 

convergence is the strategy for resolving majority label 

ties. Some of the strategies are: random label (ties are 

broken uniformly at random), label retention (label is 

retained if among majority labels), label priority 

(minimum or maximum priority label is taken), etc. In 

the end, there are different propagation criteria. 

Propagation can be terminated when each node's label 

equals the majority label, the label on the previous step, 

or the step before, or when the number of steps exceeds 

the defined threshold. 

 Synchronous and semi-synchronous propagation are 

suitable for parallel execution, while asynchronous is 

not, due to its inherent sequential nature. In this paper, 

we used synchronous propagation with maximum 

priority tie breaking. Propagation is terminated when 

each node's label equals the label on the previous step, 

or the step before, or the threshold is reached. This 

strategy is proposed in [5], as maximum priority tie 

breaking cannot produce oscillations with period longer 

than two, thus it is enough to store labels from two 

previous iterations. 

3 GPU programming and CUDA 

GPUs have been used for general-purpose computations 

for a decade. Nowadays, GPUs are powerful 

accelerators with manycore architecture, programmed 

through different low-level and high-level APIs. In this 

paper, we used NVIDIA Compute Unified Device 

Architecture (CUDA) [16] programing model, which 

allows GPU programming in languages such as C, C++, 

and many others. 

 GPUs consist of dozens of cores, thus code 

execution differs considerably from the execution on the 

CPU. CPU is used for I/O, management tasks, etc., 

while compute-intensive parts (kernels) are executed on 

the GPU. Kernel is executed by the large number of 

lightweight threads in SIMD fashion on the streaming 

multiprocessors (SMs). Kernel execution is organized as 

a grid of thread blocks, configured by the CPU. No 

synchronization between thread blocks is available 

during particular kernel execution. 

 GPU memory architecture is designed to support 

high throughput and execution of number of threads in 

parallel. There are several memories in the hierarchy 

that differ in speed and capacity: registers, on-chip (per 

SM) shared memory, read-only constant and texture 

memory. Since CPU and GPU operate in separate 

address spaces, data transfers between CPU and GPU 

are needed. In order to exploit all parallelism available 

and to maximize performance, the developer should be 

aware of resource constraints of the particular device 

architecture, memory hierarchy, SIMD nature of 

execution, etc. [17]. 

4 Implementation details 

First, sequential implementation of LPA is written in 

C++, and it used as a basis for GPU implementation. 

Adjacency list is used for network representation. It 

follows LPA principles defined in Section 2. Hash map 

from STL library is used to count label frequencies. 

𝑐𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙  𝑤𝑛𝑚
𝑚∈𝑁𝑙(𝑛)
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 Initial adjacency list representation is not suitable for 

GPUs, because of the irregular memory access patterns. 

Because of that, we adopted adjacency list with 

padding, where adjacency list for each node is padded 

with -1 for all missing edges, up to the maximum degree 

of the node in the network. Although, this might affect 

memory consumption, we assume that it is not a 

problem for modern GPUs with large global memory 

capacities. Also, this data layout is beneficial for 

memory reads, as they are coalesced, i.e. combined into 

one transaction. 

  Also, GPU implementation needed a slightly 

different approach for neighbors’ label counting, as hash 

maps are not available on the GPU. For that reason, two 

different approaches have been used. The first approach 

(lpa_1024) is restricted to maximum degree of a node 

set to 1024, which is the maximum number of threads 

per block for used GPU architecture. The 

implementation uses global label counters, stored in 

fast, shared memory of the SM on the GPU. A kernel is 

implemented to perform one iteration of the algorithm. 

 Each thread is in charge of one neighbor in the 

adjacency list of a node. It reads neighbors’ label and 

atomically updates the appropriate label counter in 

shared memory using atomicAdd intrinsic function. 

Still, atomic updates to the same memory locations are 

serialized, thus posing problems in the later iterations of 

the algorithm, when number of neighbors share the 

same label. The process iterates and kernel execution is 

repeated until propagation criteria is met.  

 To overcome the problem with limited maximum 

degree of a node, a second approach (lpa) is taken. In 

this approach, each thread is responsible for processing 

of one node and all of its neighbors. To force memory 

coalescing, initial data structure that represents the 

network is transposed with dedicated kernel. The other 

problem is related to label counting, since initial data 

structure representing counters would need the number 

of elements equal to maximum degree of a node in 

network. Shared memory has limited capacity, while 

global memory is slow. Moreover, search for label-

counter pairs would additionally affect performance.  

 Solution was found with hierarchical mapping of 

counters to registers, shared, and global memory. The 

idea is to store the most frequent label and its counter to 

registers, six successive most frequent labels to shared 

memory, and the rest to global memory. Mapping to 

shared and global memory is performed using simple 

hashing with linear probing. After all neighbors of the 

node are processed, the most dominant label is stored in 

a register. 

 Although proposed hierarchical counting introduces 

branch divergence to the kernel code, due to the several 

conditional branches needed to update counters, it does 

not affect performance greatly. After few iterations, the 

number of labels significantly decreases. For that 

reason, remaining labels are stored in register or shared 

memory, and branching minimally affects performance.    

5 Performance evaluation and discussion 

Implemented solutions are evaluated on Intel Core i7 

5820K 3.30GHz 6-core CPU with 16GB RAM using 

NVIDIA GTX Titan Black graphics card with 2880 

CUDA cores and 6GB RAM under Ubuntu 14.04 OS. 

Implementations are tested with 14 different artificial 

networks and 7 different real networks, as shown in 

Table 1 and Table 2. Artificial networks were generated 

with the well-known tool described in [18]. Execution 

time is measured with available GPU timers and nvprof 

tool. 

Table 1. Artifical test cases 

Network Nodes Edges 
Avg. 

degree 

Max. 

degree 

graph2k 2000 99120 99.12 200 

graph3k_1 3000 148928 99.29 200 

graph3k_2 3000 375198 250.13 499 

graph3k_3 3000 750884 500.59 600 

graph5k_1 5000 246825 100.00 600 

graph5k_2 5000 1249990 499.99 600 

graph5k_3 5000 1253402 501.36 1000 

graph10k_1 10000 286012 57.20 460 

graph10k_2 10000 1500837 300.17 460 

graph20k 20000 2004428 200.44 1000 

graph50k_1 50000 2458290 98.33 1000 

graph50k_2 50000 1250020 50.00 90 

graph100k 100000 2502007 50.04 90 

graph200k 200000 5021393 50.21 100 

Table 2. Real test cases 

Network Nodes Edges Avg. degree 
Max. 

degree 

karate 34 78 4.58 17 

dolphins 62 159 5.13 12 

books 105 441 8.40 25 

football 115 616 10.71 13 

jazz 198 2742 27.70 100 

euroroad 1174 1469 2.50 10 

netsci 1589 2742 3.45 34 

 

 

Figure 1. Speedup over sequential implementation  

for small and medium-sized networks 

 The results of our analysis are shown in Figure 1 and 

Figure 2, as speedups of GPU implementations over 

sequential implementation. The measurements were 

made only for discrete cases, thus the lines in the figures 

are merely a guide for the eye. 

 Figure 1 shows observed speedups over sequential 

implementation for small and medium-sized networks. 

For small networks, both implementations exhibit 

speedup, but lpa_1024 is twice faster for some test 

cases. Still, observed speedups are relatively small, 

because nodes in the network have 5-10 neighbors on 

average. Parallel overheads are not negligible for both 

implementations.  
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 Figure 1 shows the clear advantage of both 

implementations for medium-sized networks, as 

observed speedups are much higher, especially for lpa 

implementation. Lpa_1024 exhibits only limited 

scalability with the number of nodes, as overheads 

imposed with atomicAdd operations become significant. 

 

 

Figure 2. Speedup over sequential implementation  

for large networks 

 Figure 2 shows significant speedups of lpa 

implementation for large networks. Observed speedup 

remains constant with the size of the network for graphs 

with more than 50 thousand nodes. For that case, 

profiling showed that GPU resources, such as shared 

memory and number of blocks per SM, became 

saturated.  

6 Conclusion 

In this paper, we presented our experience with 

implementation of the synchronous label propagation 

algorithm on the GPU. We presented two different 

implementations of the algorithm. The first 

implementation showed better performance for small 

graphs, while the second approach showed its potential 

in large-scale networks. Observed speedups over the 

CPU implementation are significant for all test cases. 

 There are several directions for future work. First, 

we should concentrate on the quality of the partitions, 

since different strategies exist to improve the algorithm 

stability. Also, more experiments can be performed with 

hierarchical counting in order to optimize shared 

memory utilization. In the end, the choice of algorithm 

for parallel execution can be done depending on the 

input data analysis. 
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