
ERK'2017, Portorož, 359-362 359

Parallel Implementation of the Label Propagation Method

for Community Detection on the GPU

Marko Mišić1, Dražen Drašković1, Lovro Šubelj2, Marko Bajec2

1University of Belgrade, School of Electrical Engineering
2University of Ljubljana, Faculty of Computer and Information Science

E-mail: marko.misic@etf.bg.ac.rs

Abstract. Community detection in social and other

networks is one of the important problems for many

applications. Label propagation has proven to be one of

the most scalable methods for detecting communities in

large complex networks. Rapid development of modern

graphics processing units (GPUs) has allowed a

significant increase in computing power. In this paper,

we present a GPU implementation of synchronous label

propagation method. We observed speedups over

sequential implementation in the range of 3-50 times for

small networks to 50-300 times for larger networks with

thousands of nodes. The results of the analysis are

briefly discussed with an emphasis on benefits and

drawbacks of using GPUs for community detection.

1 Introduction

Complex real-world systems in nature, society, and

technology can be modeled with networks (graphs).

Nodes of the network represent different entities, while

edges represent connections between them. Different

examples exist, such as web pages on the Web

connected by hyperlinks, social networks consisting of

people connected through various degree of friendship,

co-authorship networks in scientific production, etc. [1]

 Many of these networks consists of smaller modules

with denser local structure, called communities [2].

Communities are intuitively defined as groups of nodes

densely connected within and only loosely connected

with the rest of the network. Community detection is

significant for understanding of complex systems in

sociology, biology, and computer science, as members

of the community usually play similar role in the system

[3]. Various algorithms for community detection have

been proposed in the past. Rather comprehensive survey

of those algorithms can be found in [3, 4]. On the other

hand, due to scalability issues, only a minority of these

algorithms can be applied to large real-world networks

with millions of nodes and edges. For this reason, label

propagation [5] and its variants [6] are often used for

community detection.

 The other significant issue in processing of large

real-world networks is execution time. Execution time

can be decreased using modern central processing units

(CPUs) and graphics processing units (GPUs) which

offer significant amount of parallelism [7]. Modern

CPUs are multicore processors, consisting of dozens of

cores that are able to execute program code

concurrently, while contemporary GPUs are manycore

accelerators with hundreds or thousands of cores

available for execution. CPUs and GPUs are usually

combined in a heterogeneous system, where compute-

intensive parts are offloaded to the accelerator for fast

execution. In that sense, extracting and mapping

parallelism from existing problems becomes more and

more important in different fields of research.

 Computational efficiency and application of the

community detection methods to very large networks

have been studied in the open literature. Distributed

community detection approaches have been presented in

[8, 9], while experiences with community detection on

multicore and GPU architectures can be found in [10].

 In this paper, we have implemented and evaluated

synchronous label propagation algorithm (LPA) on the

GPU using NVIDIA CUDA programming model.

Parallel implementation of LPA is tested and compared

to its sequential counterpart with several artificial and

real-world workloads. We observed significant

speedups over sequential implementation and present

our experiences with porting LPA on the GPU.

 The rest of the paper is organized as follows. The

second section presents a short overview of community

detection algorithms with the emphasis on LPA. In the

third section, we give a short overview of GPU

architecture and CUDA programming model.

Implementation details are given in the fourth section,

while experimental results are discussed in the fifth

section. Conclusion and directives for future work are

given in the final section.

2 Community detection in graphs

Let the network be represented by a simple undirected

graph G(N,E), where N is the set of nodes and E is the

set of edges. Depending on the specific application or

analyzed system, different definitions of community

exist. Stricter definitions, such as cliques, n-cliques, n-

clans, etc. are mostly used in social network analysis

[1]. Most of the definitions are based on the premise

that members of the community are more densely

connected within than with the rest of the network [3].

Communities can be defined as special case of clusters

of nodes found in real networks. In this paper we use the

terms community and cluster as synonyms.

 Sometimes, intra-cluster and inter-cluster densities

are used in the definition. Let C be the subgraph of G.

Intra-cluster density of the subgraph C can be defined as

the ratio between the number of internal edges of C and

the number of all possible internal edges. Similarly,

inter-cluster density of the subgraph C can be defined as

the ratio between the number of edges running from the

vertices of C to the rest of the graph and the maximum

mailto:marko.misic@etf.bg.ac.rs

360

number of inter-cluster edges possible. For C to be a

community, intra-cluster density is expected to be

appreciably higher than average density of the network.

Many community detection algorithms try to find a

good compromise between high intra-cluster and low

inter-cluster density in order to find quality partitioning.

Quality of cluster partitioning is often evaluated through

modularity [11] and conductance [12] measures.

 As mentioned before, numerous methods are used

for community detection. Girwan and Newman [2]

described an algorithm for hierarchical clustering. The

algorithm iteratively removes the edge with the highest

edge betweenness. Due to its high time complexity in

the order of O(N2E), it is not practical for networks with

more than several thousand nodes. Louvain method [13]

is based on modularity maximization, but it has

problems with quality of partitions.

 Label propagation algorithm [5] is a simple, local-

based method for community detection. Each node in

the network is assigned a unique label. Communities are

found by iteratively propagating labels among nodes in

such way that each node adopts the label shared by most

of its neighbors. Let wnm be the weight of the edge

between nodes n and m, cn denote the community label

of node n, and N(n) denotes the set of its neighbors. In

each iteration, the node adopts the label shared by most

of its neighbors, takin into account edge weights:

 (1)

Nl(n) is the set of neighbors of n that share common

label l. The labels are propagated quickly in the denser

areas of the network, and densely connected sets of

nodes form a consensus on some particular label after

only a few iterations [5, 14]. Final communities are

obtained when algorithm converges, as connected sets

of nodes sharing the same label. Time complexity is

nearly linear O(N).

 The main issues with LPA are convergence

problems for some types of networks. The algorithm

described above uses synchronous propagation

(updating) of labels, where each node’s label in iteration

i is updated using labels of its neighbors in iteration i-1.

For that reason, it can produce oscillation of labels for

some network configurations, e.g. bipartite graphs. To

ensure convergence, asynchronous updating of nodes is

proposed in [5]. In such method, nodes are updated

sequentially in some random order. On the other hand,

introduction of randomness hampers the robustness of

the algorithm, and consequently also the stability of the

identified community structure. Some authors [15]

propose semi-synchronous propagation, based on graph

coloring and synchronous propagation, which eliminates

convergence problems. However, graph coloring

problem introduces non-trivial time complexity in the

algorithm.

 The other significant problem of LPA that affects

convergence is the strategy for resolving majority label

ties. Some of the strategies are: random label (ties are

broken uniformly at random), label retention (label is

retained if among majority labels), label priority

(minimum or maximum priority label is taken), etc. In

the end, there are different propagation criteria.

Propagation can be terminated when each node's label

equals the majority label, the label on the previous step,

or the step before, or when the number of steps exceeds

the defined threshold.

 Synchronous and semi-synchronous propagation are

suitable for parallel execution, while asynchronous is

not, due to its inherent sequential nature. In this paper,

we used synchronous propagation with maximum

priority tie breaking. Propagation is terminated when

each node's label equals the label on the previous step,

or the step before, or the threshold is reached. This

strategy is proposed in [5], as maximum priority tie

breaking cannot produce oscillations with period longer

than two, thus it is enough to store labels from two

previous iterations.

3 GPU programming and CUDA

GPUs have been used for general-purpose computations

for a decade. Nowadays, GPUs are powerful

accelerators with manycore architecture, programmed

through different low-level and high-level APIs. In this

paper, we used NVIDIA Compute Unified Device

Architecture (CUDA) [16] programing model, which

allows GPU programming in languages such as C, C++,

and many others.

 GPUs consist of dozens of cores, thus code

execution differs considerably from the execution on the

CPU. CPU is used for I/O, management tasks, etc.,

while compute-intensive parts (kernels) are executed on

the GPU. Kernel is executed by the large number of

lightweight threads in SIMD fashion on the streaming

multiprocessors (SMs). Kernel execution is organized as

a grid of thread blocks, configured by the CPU. No

synchronization between thread blocks is available

during particular kernel execution.

 GPU memory architecture is designed to support

high throughput and execution of number of threads in

parallel. There are several memories in the hierarchy

that differ in speed and capacity: registers, on-chip (per

SM) shared memory, read-only constant and texture

memory. Since CPU and GPU operate in separate

address spaces, data transfers between CPU and GPU

are needed. In order to exploit all parallelism available

and to maximize performance, the developer should be

aware of resource constraints of the particular device

architecture, memory hierarchy, SIMD nature of

execution, etc. [17].

4 Implementation details

First, sequential implementation of LPA is written in

C++, and it used as a basis for GPU implementation.

Adjacency list is used for network representation. It

follows LPA principles defined in Section 2. Hash map

from STL library is used to count label frequencies.

𝑐𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙 𝑤𝑛𝑚
𝑚∈𝑁𝑙(𝑛)

361

 Initial adjacency list representation is not suitable for

GPUs, because of the irregular memory access patterns.

Because of that, we adopted adjacency list with

padding, where adjacency list for each node is padded

with -1 for all missing edges, up to the maximum degree

of the node in the network. Although, this might affect

memory consumption, we assume that it is not a

problem for modern GPUs with large global memory

capacities. Also, this data layout is beneficial for

memory reads, as they are coalesced, i.e. combined into

one transaction.

 Also, GPU implementation needed a slightly

different approach for neighbors’ label counting, as hash

maps are not available on the GPU. For that reason, two

different approaches have been used. The first approach

(lpa_1024) is restricted to maximum degree of a node

set to 1024, which is the maximum number of threads

per block for used GPU architecture. The

implementation uses global label counters, stored in

fast, shared memory of the SM on the GPU. A kernel is

implemented to perform one iteration of the algorithm.

 Each thread is in charge of one neighbor in the

adjacency list of a node. It reads neighbors’ label and

atomically updates the appropriate label counter in

shared memory using atomicAdd intrinsic function.

Still, atomic updates to the same memory locations are

serialized, thus posing problems in the later iterations of

the algorithm, when number of neighbors share the

same label. The process iterates and kernel execution is

repeated until propagation criteria is met.

 To overcome the problem with limited maximum

degree of a node, a second approach (lpa) is taken. In

this approach, each thread is responsible for processing

of one node and all of its neighbors. To force memory

coalescing, initial data structure that represents the

network is transposed with dedicated kernel. The other

problem is related to label counting, since initial data

structure representing counters would need the number

of elements equal to maximum degree of a node in

network. Shared memory has limited capacity, while

global memory is slow. Moreover, search for label-

counter pairs would additionally affect performance.

 Solution was found with hierarchical mapping of

counters to registers, shared, and global memory. The

idea is to store the most frequent label and its counter to

registers, six successive most frequent labels to shared

memory, and the rest to global memory. Mapping to

shared and global memory is performed using simple

hashing with linear probing. After all neighbors of the

node are processed, the most dominant label is stored in

a register.

 Although proposed hierarchical counting introduces

branch divergence to the kernel code, due to the several

conditional branches needed to update counters, it does

not affect performance greatly. After few iterations, the

number of labels significantly decreases. For that

reason, remaining labels are stored in register or shared

memory, and branching minimally affects performance.

5 Performance evaluation and discussion

Implemented solutions are evaluated on Intel Core i7

5820K 3.30GHz 6-core CPU with 16GB RAM using

NVIDIA GTX Titan Black graphics card with 2880

CUDA cores and 6GB RAM under Ubuntu 14.04 OS.

Implementations are tested with 14 different artificial

networks and 7 different real networks, as shown in

Table 1 and Table 2. Artificial networks were generated

with the well-known tool described in [18]. Execution

time is measured with available GPU timers and nvprof

tool.

Table 1. Artifical test cases

Network Nodes Edges
Avg.

degree

Max.

degree

graph2k 2000 99120 99.12 200

graph3k_1 3000 148928 99.29 200

graph3k_2 3000 375198 250.13 499

graph3k_3 3000 750884 500.59 600

graph5k_1 5000 246825 100.00 600

graph5k_2 5000 1249990 499.99 600

graph5k_3 5000 1253402 501.36 1000

graph10k_1 10000 286012 57.20 460

graph10k_2 10000 1500837 300.17 460

graph20k 20000 2004428 200.44 1000

graph50k_1 50000 2458290 98.33 1000

graph50k_2 50000 1250020 50.00 90

graph100k 100000 2502007 50.04 90

graph200k 200000 5021393 50.21 100

Table 2. Real test cases

Network Nodes Edges Avg. degree
Max.

degree

karate 34 78 4.58 17

dolphins 62 159 5.13 12

books 105 441 8.40 25

football 115 616 10.71 13

jazz 198 2742 27.70 100

euroroad 1174 1469 2.50 10

netsci 1589 2742 3.45 34

Figure 1. Speedup over sequential implementation

for small and medium-sized networks

 The results of our analysis are shown in Figure 1 and

Figure 2, as speedups of GPU implementations over

sequential implementation. The measurements were

made only for discrete cases, thus the lines in the figures

are merely a guide for the eye.

 Figure 1 shows observed speedups over sequential

implementation for small and medium-sized networks.

For small networks, both implementations exhibit

speedup, but lpa_1024 is twice faster for some test

cases. Still, observed speedups are relatively small,

because nodes in the network have 5-10 neighbors on

average. Parallel overheads are not negligible for both

implementations.

362

 Figure 1 shows the clear advantage of both

implementations for medium-sized networks, as

observed speedups are much higher, especially for lpa

implementation. Lpa_1024 exhibits only limited

scalability with the number of nodes, as overheads

imposed with atomicAdd operations become significant.

Figure 2. Speedup over sequential implementation

for large networks

 Figure 2 shows significant speedups of lpa

implementation for large networks. Observed speedup

remains constant with the size of the network for graphs

with more than 50 thousand nodes. For that case,

profiling showed that GPU resources, such as shared

memory and number of blocks per SM, became

saturated.

6 Conclusion

In this paper, we presented our experience with

implementation of the synchronous label propagation

algorithm on the GPU. We presented two different

implementations of the algorithm. The first

implementation showed better performance for small

graphs, while the second approach showed its potential

in large-scale networks. Observed speedups over the

CPU implementation are significant for all test cases.

 There are several directions for future work. First,

we should concentrate on the quality of the partitions,

since different strategies exist to improve the algorithm

stability. Also, more experiments can be performed with

hierarchical counting in order to optimize shared

memory utilization. In the end, the choice of algorithm

for parallel execution can be done depending on the

input data analysis.

Acknowledgments

This work has been partially funded by the Ministry of

Education and Science of the Republic of Serbia

(III44009 and TR32047), and bilateral project Serbia-

Slovenia “Open extraction of information for Slovene

and Serbian languages”. The authors gratefully

acknowledge the financial support.

References

[1] R. A. Hanneman and M. Riddle, "Introduction to social

network methods," ed. Riverside, CA: University of

California, Riverside, 2005.

[2] M. Girvan and M. E. Newman, "Community structure in

social and biological networks," Proceedings of the

national academy of sciences, vol. 99, no. 12, pp. 7821-

7826, 2002.

[3] S. Fortunato, "Community detection in graphs," Physics

reports, vol. 486, no. 3, pp. 75-174, 2010.

[4] S. Fortunato and D. Hric, "Community detection in

networks: A user guide," Physics Reports, vol. 659, pp. 1-

44, 2016.

[5] U. N. Raghavan, R. Albert, and S. Kumara, "Near linear

time algorithm to detect community structures in large-

scale networks," Physical review E, vol. 76, no. 3, p.

036106, 2007.

[6] L. Šubelj and M. Bajec, "Robust network community

detection using balanced propagation," The European

Physical Journal B-Condensed Matter and Complex

Systems, vol. 81, no. 3, pp. 353-362, 2011.

[7] M. J. Mišić, Đ. M. Đurđević, and M. V. Tomašević,

"Evolution and trends in GPU computing," in MIPRO,

2012 Proceedings of the 35th International Convention,

2012, pp. 289-294: IEEE.

[8] N. Buzun et al., "Egolp: Fast and distributed community

detection in billion-node social networks," in Data

Mining Workshop (ICDMW), 2014 IEEE International

Conference on, 2014, pp. 533-540: IEEE.

[9] M. Ovelgönne, "Distributed community detection in web-

scale networks," in Proceedings of the 2013 IEEE/ACM

International Conference on Advances in Social Networks

Analysis and Mining, 2013, pp. 66-73: ACM.

[10] J. Soman and A. Narang, "Fast community detection

algorithm with gpus and multicore architectures," in

Parallel & Distributed Processing Symposium (IPDPS),

2011 IEEE International, 2011, pp. 568-579: IEEE.

[11] M. E. Newman and M. Girvan, "Finding and evaluating

community structure in networks," Physical review E,

vol. 69, no. 2, p. 026113, 2004.

[12] B. Bollobás, Modern graph theory. Springer Science &

Business Media, 2013.

[13] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E.

Lefebvre, "Fast unfolding of communities in large

networks," Journal of statistical mechanics: theory and

experiment, vol. 2008, no. 10, p. P10008, 2008.

[14] L. Šubelj and M. Bajec, "Unfolding communities in large

complex networks: Combining defensive and offensive

label propagation for core extraction," Physical Review E,

vol. 83, no. 3, p. 036103, 2011.

[15] G. Cordasco and L. Gargano, "Community detection via

semi-synchronous label propagation algorithms," in

Business Applications of Social Network Analysis

(BASNA), 2010 IEEE International Workshop on, 2010,

pp. 1-8: IEEE.

[16] "CUDA C Programming Guide 7.5," ed: NVIDIA

Corporation, 2016.

[17] D. B. Kirk and W. H. Wen-mei, Programming massively

parallel processors: a hands-on approach. Morgan

Kafumann, 2012.

[18] A. Lancichinetti and S. Fortunato, "Benchmarks for

testing community detection algorithms on directed and

weighted graphs with overlapping communities,"

Physical Review E, vol. 80, no. 1, p. 016118, 2009.

