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Abstract. Community structure is largely regarded as an intrinsic prop-
erty of complex real-world networks. However, recent studies reveal that
networks comprise even more sophisticated modules than classical cohe-
sive communities. More precisely, real-world networks can also be natu-
rally partitioned according to common patterns of connections between
the nodes. Recently, a propagation based algorithm has been proposed
for the detection of arbitrary network modules. We here advance the lat-
ter with a more adequate community modeling based on network cluster-
ing. The resulting algorithm is evaluated on various synthetic benchmark
networks and random graphs. It is shown to be comparable to current
state-of-the-art algorithms, however, in contrast to other approaches, it
does not require some prior knowledge of the true community structure.
To demonstrate its generality, we further employ the proposed algorithm
for community detection in different unipartite and bipartite real-world
networks, for generalized community detection and also predictive data
clustering.
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1 Introduction

Over a decade of research in network analysis has revealed a number of common
properties of complex real-world networks [57,13]. Community structure [18]—
the occurrence of cohesive modules of nodes—is of particular interest as it pro-
vides an insight into not only structural organization but also functional behavior
of various real-world systems [35,2]. The analysis of communities has thus been
the focus of many recent endeavors [15,38], while community structure analysis
is also considered as one of the most prominent areas of network science [8,38].

However, most of the past work was constrained to communities character-
ized by higher density of links—link-density communities [18] (Fig. 1(a)). In
contrast to the latter, recent studies reveal that networks comprise even more
sophisticated modules than classical cohesive communities [34,1,37,52]. In par-
ticular, real-world networks can also be naturally partitioned according to com-
mon patterns of connections among nodes—into link-pattern communities [28,34]
(Fig. 1(b)). Link-pattern communities can in fact be related to relevant func-
tional roles in various complex systems [37,52], moreover, they also provide a



(a) Zachary’s karate network [59] (b) Davis’s women network [9]

Fig. 1. Comparison between (a) link-density and (b) link-pattern communities.

further comprehension of real-world network structure that is obscure under
classical frameworks. Note that link-density communities could be seen as a spe-
cial case of link-pattern communities, although several fundamental differences
exist [52]. In particular, link-pattern communities do not correspond to densely
connected groups of nodes, while generally do not even feature connectedness.
The latter actually implies low transitivity—clustering coefficient [57]—for the
nodes in link-pattern communities, which contradicts with small-world phenom-
ena [57]. However, recent work suggests that best link-pattern communities might
indeed emerge in parts of networks that exhibit low values of clustering (e.g.,
technological networks), where small-world property does not generally hold [50].

Recently, Šubelj and Bajec [52] have proposed a general propagation algo-
rithm that can reveal arbitrary network modules ranging from link-density to
link-pattern communities. Their algorithm does not require any prior knowledge
of the true structure, though they introduce a community parameter that models
the nature of each community according to the measure of network bottlenecks—
conductance [5]. We advance the latter by proposing a more adequate modeling
strategy based on node clustering coefficient [57]. The resulting algorithm is
evaluated on various synthetic benchmark networks with planted partition, on
random graphs and also resolution limit examples. It is shown to be comparable
to current state-of-the-art, whereas, the proposed strategy also greatly improves
on the approach of Šubelj and Bajec [52] (on these networks). Furthermore,
to demonstrate its generality, we also employ the algorithm for community de-
tection in different unipartite and bipartite real-world networks, for generalized
community detection and predictive data clustering.

The rest of the paper is structured as follows. In Section 2 we briefly review
relevant related work, with emphasis on the community detection literature.
Section 3 introduces the proposed algorithm, while the empirical evaluation with
formal discussion is done in Section 4. The performance on various real-world
examples is presented in Section 5, and conclusions are made in Section 6.



2 Related work

Despite the wealth of the literature on classical communities in recent years [15],
only a small number of authors have considered more general link-pattern com-
munities. Nevertheless, authors have recently proposed different algorithms based
on stochastic blockmodels [1,20], mixture models [34,47], model selection [28,37],
data clustering [27] and other [36]. However, in contrast to the propagation algo-
rithm proposed in this paper, and that in [52], all other approaches require some
prior knowledge of the true structure (e.g., the number of communities). The
latter indeed seriously limits their use in practice. Note that authors have also
analyzed vertex similarity based on common patterns of connections [4,26]—
commonly referred to as structural equivalence—whereas, some of the research
on classical communities also apply for link-pattern counterparts [19,45].

It ought to be mentioned that link-pattern communities are known as block-
models [58] in social networks literature. These have been extensively studied in
the past, however, their main focus and employed formulation differs from ours.

3 Model-based propagation

Let the network be represented by an undirected graph G(N,L), where N is the
set of nodes of the graph and L is the set of its links (edges). Furthermore, let
wnm be the weight of the link between nodes n,m ∈ N . Moreover, let cn denote
the community (label) of node n ∈ N , and let Γn be the set of its neighbors.

The proposed model-based propagation algorithm is, as the algorithm in [52],
based on the label propagation principle of Raghavan et al. [39]. In the following,
we thus first introduce the latter.

Label Propagation. Label propagation algorithm [39] (LPA) reveals link-density
communities by exploiting the following procedure. First, each node n ∈ N is la-
beled with a unique label (i.e., cn = ln). Then, at each iteration, the node adopts
the label shared by most of its neighbors (with respect to link weights). Hence,

cn = argmax
l

∑
m∈Γl

n

wnm, (1)

where Γln is the set of neighbors of node n that share label l (ties are broken
uniformly at random1). Due to the existence of many intra-community links,
relative to the number of inter-community links, cohesive modules of nodes form
a consensus on some label after a few iterations. Thus, when the algorithm
converges—a local equilibrium is reached—disconnected sets of nodes sharing
the same label are classified into the same community. Due to extremely fast
structural inference of label propagation, the algorithm exhibits near linear com-
plexity and can easily scale to networks with millions of nodes and links [53,39].

Note that, to address issues with oscillations of labels in some networks (e.g.,
bipartite networks), label updates in Eq. (1) occur in a random order [39].

1 When node’s current label is among most frequent, the node retains its label.



General Propagation. Šubelj and Bajec [52] have argued that label propagation
cannot be directly applied for the detection of link-pattern communities, as the
bare nature of propagation requires connected (and cohesive) groups of nodes.
However, when one considers second order neighborhoods, and propagates labels
through nodes’ neighbors, link-pattern communities indeed correspond to cohe-
sive modules of nodes (see Fig. 1(b)). Based on the above they have proposed
general propagation algorithm [52] (GPA) that is presented in the following.

Let δc be a community parameter that models the nature of community c,
δc ∈ [0, 1]. Assume δc equals 1 and 0 for link-density and link-pattern communi-
ties, respectively (to be properly defined later). Label propagation in Eq. (1) is
then advanced into a general community detection algorithm as

cn = argmax
l

δl ∑
m∈Γl

n

wnmbmdm + (1− δl)
∑

m∈Γl
s\Γn|s∈Γn

wsnmbmd̃m

 (2)

where wsnm = wnswsm

ss
and sn is the strength of node n ∈ N (i.e., sn =∑

m∈Γn
wnm). In the case of link-density communities (left-hand side of Eq. (2)),

the labels are propagated among the neighbors as before, whereas, in the case
of link-pattern communities (right-hand side of Eq. (2)), the labels are propa-
gated through nodes’ neighbors—between the nodes at distance two. Thus, the
algorithm can indeed reveal either link-density or link-pattern communities, or
different mixtures of both, when they are clearly depicted in the network’s topol-
ogy. (Note that in [52] the algorithm was presented for unweighted networks.)

Node balancers bn [51] and diffusion values dn, d̃n [53,52] in Eq. (2) improve
the algorithm’s stability and accuracy, respectively. More precisely, random label
update orders (see above) severely hamper the robustness of the approach, and
consequently also the stability of the identified community structure [54]. In
particular, nodes that are updated at the beginning exhibit higher propagation
preferences than those that are updated towards the end [51]. Thus, balancers bn
are utilized to counteract for the randomness introduced by update orders—lower
and higher preferences are given to the nodes updated first and last, respectively.

Let in denote a normalized position of node n ∈ N in some random order,
in ∈ (0, 1]. Then, node balancers are set according to

bn =
1

1 + e−µ(in−λ)
, (3)

where λ and µ are parameters of the algorithm. Intuitively, we fix λ to 1
2 , while µ

is set to 2 based on some preliminary experiments (see Section 4). Node balancers
can also be modeled with a linear function as bn = in, however, introduction
of the above parameters allows for a distinct control over the algorithm. In
particular, analysis in Section 4 reveals that increasing µ improves the stability
of the algorithm, although the computational time thus also increases. Note also
that setting µ to 0 yields a classical label propagation where all bn are equal.

To further boost the community detection strength of the algorithm, de-
fensive preservation of communities is employed through diffusion values dn,



d̃n [53,52]. Here higher diffusion values—propagation preferences—are given to
core nodes of each (current) community, while lower values are given to their
border nodes. The latter results in an immense ability of detecting communities,
even when they are only weakly depicted in the network’s topology [53]. At each
iteration, diffusion values are estimated by means of a random walker utilized
on each (current) community. Hence,

dn =
∑

m∈Γcn
n

dm/k
cn
m (4)

and

d̃n =
∑

m∈Γcn
s \Γn|s∈Γn

d̃m∑
s∈Γm

kcns
, (5)

where kcnn is the intra-community degree of node n ∈ N (all dn, d̃n are initial-
ized to 1

|N | ). Besides deriving an estimate of the core and border of each com-

munity, the main rationale here is to formulate propagation—diffusion—within
each community, to estimate the current state of label propagation, and then
to adequately alter the dynamics of the process. Analysis in Section 4 reveals
that defensive preservation of communities significantly improves the detection
strength of the algorithm, while for further discussion and analysis see [53].

Despite the discussion above, the core of the algorithm is in fact repre-
sented by a community modeling strategy implemented through parameters δc.
Šubelj and Bajec [52] have proposed to measure the conductance [5] of each com-
munity, to determine whether it better conforms with link-density or link-pattern
regime. Conductance Φ(c) of community c is defined as a relative size of the cor-
responding network cut—ratio of inter-community links—thus it is a measure
of network bottlenecks. Hence, at each iteration, they simply set δc = 1− Φ(c),
while all δc are initialized to 1

2 . The main weakness of their strategy is that
each community is considered independently of other. Thus, in the following, we
propose a more adequate community modeling strategy based on the properties
of complex real-world networks.

Model-based Propagation. Community modeling strategy of Šubelj and Bajec [52]
considers merely the nature of each respective community, whereas all other
communities are disregarded. Although no proper empirical study exists, in an
ideal case, link-pattern communities would link to other link-pattern communi-
ties rather than to other link-density communities. The latter follows from the
fact that the concerned links would else obviously decrease the quality of the re-
spective link-density community—make it a link-pattern community. Thus, we
propose a community model based on the hypothesis that the neighbors’ com-
munities should be of the same type—either link-density or link-pattern—as the
concerned node’s community. Hence,

δc =
1

|N c|
∑

m∈Γn|n∈Nc

δcm
kn

, (6)



where kn is the degree of node n ∈ N and N c is the set of nodes in community c.
We also argue that an adequate initialization of community parameters δc

is of vital importance (exact results are omitted). Otherwise, the algorithm can
easily get trapped in some local stable—probably suboptimal—fixed point that
is hard to escape from. However, Eq. (6) cannot be directly employed at the
beginning, as all nodes still reside in their own communities. We thus refine the
above hypothesis such that the node’s neighbors should not only reside in the
same type of the community, but in the same respective community. The latter
immediately implies that the neighbors of the nodes in link-density communities
should also link to each other, whereas the opposite holds for the nodes in link-
pattern communities. Hence, for each node n ∈ N , one could initially set δcn
to Cn, where Cn is a node clustering coefficient [57] defined as the probability
that two neighbors of node n also link to each other—network transitivity. It
ought to be mentioned that recent work suggests that transitivity—rather than
homophily—gives rise to the modular structure in real-world networks [17].

However, consider a node with very high degree—a hub node. Hubs com-
monly appear in link-density communities [19], still, due to a large number of
links, they would only rarely experience high values of clustering coefficient (the
opposite would in fact imply a large clique). Also, as most networks are disassor-
tative by degree [31], hubs tend to link to low degree nodes that cannot provide
for high clustering of the hub node [48]. Indeed, in many real-world networks
node clustering coefficient roughly follows Cn ∼ k−1

n [56,40,48], where kn is the
degree of node n ∈ N . Hence, we model initial communities as (assume Cn > 0)

δcn =

{
1 for Cn > αk−1

n + β, (7a)

ρ otherwise, (7b)

where α and β are estimated from the network using ordinary least squares, and
ρ is a parameter. We set ρ to 1

4 based on some preliminary experiments.
Eq. (7) and Eq. (6) define the proposed model-based propagation algorithm

(MPA), which is else (almost) identical to the algorithm in [52] (see Alg. 1). How-
ever, the evaluation on synthetic and real-world networks in Section 4 and Sec-
tion 5, respectively, reveals that the proposed approach significantly outperforms
that in [52]. For a thorough evaluation, we also analyze two variations of the
basic approach that fix all community parameters δc to either 1 or 0. The ap-
proaches thus result in a fully link-density or link-pattern community detection
algorithms, and are denoted MPA(D) and MPA(P), respectively.

4 Evaluation and discussion

In the following we evaluate the proposed algorithm on different synthetic bench-
mark networks with planted partition, and also on random networks. The results
are assessed in terms of three different measures of community significance, bor-
rowed from the field of information theory and community detection literature.

Let C be a partition extracted by an algorithm and let P be the known parti-
tion of the network (corresponding random variables are C and P , respectively).



Algorithm 1 Model-based propagation algorithm (MPA)

Input: Graph G(N,L) and parameters λ, µ, ρ
Output: Communities C
{Community initialization.}
for n ∈ N do
cn ← ln{Unique label.}
δcn ← {Model according to Eq. (7).}
dn, d̃n ← 1/|N |

end for
{Model-based propagation.}
while not converged do

shuffle(N)
for n ∈ N do
{General propagation.}
bn ← 1/(1 + e−µ(in−λ))

cn ← argmaxl

(
δl
∑

m∈Γl
n
wnmbmdm + (1− δl)

∑
m∈Γl

s\Γn|s∈Γn
wsnmbmd̃m

)
{Re-estimation.}
dn ←

∑
m∈Γ

cn
n
dm/k

cn
m and d̃n ←

∑
m∈Γ

cn
s |s∈Γn

d̃m/
∑

s∈Γm
kcns

end for
for c ∈ C do
{Community modeling.}
δc ← 1/|Nc|

∑
m∈Γn|n∈Nc δcm/kn {Omitted on first iteration.}

end for
end while
return C

First—normalized mutual information [8] (NMI)—has become a de facto stan-

dard in the recent literature. NMI of C and P is defined as 2I(C,P )
H(C)+H(P ) , where

I(C,P ) is the mutual information, and H(C), H(P ) and H(C|P ) are standard
and conditional entropies. NMI of identical partitions equals 1, and is 0 for in-
dependent ones, NMI ∈ [0, 1]. Second, we also consider normalized variation of
information [30,22] (NVOI), which is a symmetric local measure that has the
properties of a distance in the space of partitions. NVOI of C and P equals
H(C|P )+H(P |C)

log |N | , therefore, in contrast to NMI, lower values represent better cor-

relation between partitions, NVOI ∈ [0, 1]. Last, for a better comprehension, we
also adopt a more intuitive measure—fraction of correctly classified nodes [18]
(FCC)—that is commonly adopted within community detection literature. The
node is considered correctly classified, if it resides in the same community as at
least one half of the nodes in its true community. Again, FCC ∈ [0, 1].

Community detection algorithms introduced in Section 3 are compared against
a greedy agglomerative optimization [32,7] of modularityQ [33] (denoted MO(G))
—a classical link-density community detection algorithm—and a mixture model
with expectation-maximization [10] proposed by Newman and Leicht [34] (de-
noted MM(EM)). The latter can detect arbitrary network modules and is cur-
rently among state-of-the-art approaches for generalized community detection [34,37].



However, it demands the correct number of communities to be known ahead of
time, which puts the algorithm in significant advantage compared to others [23].
For simplicity, we limit the number of iterations to 100 for all algorithms.

GN2 Benchmark. The algorithms are first applied to a class of benchmark net-
works [37] that is in fact a generalization of a classical benchmark proposed
by Girvan and Newman [18]. Networks comprise four communities of 32 nodes,
whereas, two communities correspond to classical link-density modules, while
the other two form a bipartite structure of link-pattern communities. Average
degree is fixed to 16, while the community structure is controlled by a mixing
parameter θ, θ ∈ [0, 1]. When θ is 0, all links are set according to the designed
community structure, while for θ equal 1, the networks are completely random.

The results are shown in Fig. 2. Observe that for small values of θ only
MPA and MPA(P) can accurately reveal the planted structure in these networks.
However, when θ increases, the performance of MPA is similar to that of a clas-
sical community detection algorithm (e.g., MO(G) or MPA(D)). MM(EM) can
detect communities to some extent until θ ≤ 1

3 (dashed lines in Figs. 2, 3)—when,
for the nodes within link-density communities, there are twice as many links that
conform with the planted structure than randomly placed links. Note also that
twice as many links are needed to define a link-pattern community, compared
to a respective link-density community, which would yield the same threshold at
θ = 1

6 for these networks (solid lines in Figs. 2, 3). Thus, MPA accurately extracts
planted link-density and link-pattern communities in these networks, as long as
they are clearly depicted in the network’s topology. Note also that community
modeling strategy within MPA seems more adequate than that of GPA.

SB Benchmark. GN2 benchmark provides a rather unrealistic testbed due to
homogeneous degree and community size distributions. We address the latter by
proposing a class of simple benchmark networks with heterogeneous community
sizes. Networks comprise three communities of 16, 32 and 24 nodes, respectively
(see network in Fig. 8(a)). The latter two again form a bipartite structure of
link-pattern communities, while the third community corresponds to a classical
cohesive module. Links are placed according to the designed community struc-
ture such that the average degree of the nodes in the first and third community
is fixed to 16. The latter implies an average degree of 8 for the nodes in the
second community. Furthermore, we also add some number of links uniformly at
random for each node—denoted node confusion degree κ, κ ≥ 0.

The results appear in Fig. 3. The performance of the algorithms is rather
similar to that on GN2 benchmark (note different scales in Figs. 2, 3). Only
MPA can accurately reveal the planted structure for small values of κ, while the
model within GPA again seems to fail. Observe that MM(EM) can extract com-
munities equally well, even when κ equals 16—only 1

3 of the links for the nodes in
the second community still agrees with the intrinsic structure, thus, the commu-
nities are only marginally defined. The latter clearly demonstrates that knowing
an exact number of communities indeed presents a significant advantage.



0 0.1 0.2 0.3 0.4 0.5

Mixing parameter

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n 

(N
M

I)

MO(G)
GPA
MPA(D)
MPA(P)
MPA
MM(EM)

(a) Analysis subject to NMI

0 0.1 0.2 0.3 0.4 0.5

Mixing parameter

0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 v
ar

ia
tio

n 
of

 in
fo

rm
at

io
n 

(N
VO

I)

MO(G)
GPA
MPA
MM(EM)

(b) Analysis subject to NVOI

Fig. 2. Analysis on GN2 benchmark networks [37]. The values are estimates over 100
network realizations, while error bars show standard error of the mean.
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Fig. 3. Analysis on SB benchmark networks. The values are estimates over 100 network
realizations, while error bars show standard error of the mean.

(a) Analysis subject to NMI (b) Analysis subject to NVOI

Fig. 4. Analysis on LFR benchmark networks. The values are estimates over 10 network
realizations, while error bars show standard error of the mean. To ensure convergence,
µ is set to 1

2
.
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Fig. 5. Analysis on HN benchmark networks [6]. The values are estimates over 1000
network realizations, while missing values of p in the legend equal 1
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. See also text.

LFR Benchmark. To enable easier comparison with previous literature on com-
munity detection, we also apply the algorithms to a class of standard benchmark
networks with scale-free degree and community size distributions proposed by
Lancichinetti et al. [25]. The size of the networks is set to 1000, while community
sizes range between 10 and 50 nodes. Note that all communities here correspond
to a link-density regime. As before, the quality of the planted structure is con-
trolled by a mixing parameter θ, θ ∈ [0, 1]. For comparison, we also analyze two
variations of MPA that do not employ either balanced propagation or defensive
preservation of communities (denoted MPA-D and MPA-B, respectively).

Results in Fig. 4 show that MPA most accurately reveals the planted struc-
tures in these networks, while it also significantly outperforms the other gen-
eralized community detection algorithm MM(EM). Observe also that defensive
preservation of communities greatly improves the algorithm’s community detec-
tion strength. Comparing the results with an analysis of over ten state-of-the-
art approaches for classical community detection conducted in [24], we conclude
that, at least on these networks, MPA performs similarily as the best algo-
rithms analyzed there. These are hierarchical modularity optimization of Blon-
del et al. [3], model selection technique of Rosvall and Bergstrom [44], spectral
algorithm proposed by Donetti and Muñoz [11] and multi-resolution spin model
of Ronhovde and Nussinov [43].

HN Benchmark. Next, we also analyze the proposed algorithm on a class of
benchmark networks with a hierarchical structure [6]. In particular, networks
are constructed according to a community dendrogram in Fig. 5(a), where leafs
correspond to eight modules of 16 nodes, while each node d of the dendrogram
is also associated with a probability pd, pd ∈ [0, 1]. The nodes of the network are
linked with the probability associated with the lowest common ancestor in the
community dendrogram. Varying the values of pd can infer (almost) arbitrary hi-
erarchical structure of either link-density or link-pattern communities. However,



5 10 15 20 25 30

Average degree

0

2

4

6

8

10

12

14

16

N
um

be
r o

f c
om

m
un

iti
es

Components
MO(G)
GPA
MPA

(a) Analysis on random graphs [12]

8 10 12 14 16 18 20 22 24

Number of planted communities

0

5

10

15

20

25

30

N
um

be
r o

f c
om

m
un

iti
es

Communities
MO(G)
GPA
MPA
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Fig. 6. Analysis on (a) random graphs [12] and (b) resolution limit test networks [16].
The values are estimates over 100 network realizations, while error bars are smaller
than the symbol sizes.

due to simplicity, we associate each level of the nodes with the same probability
pd. Thus, denote p = [p1, p2, p3, p4] to be the vector of respective probabilities
for the nodes from the lowest to the highest level of the hierarchy, respectively.

The performance of MPA on five realizations of the above benchmark can be
seen in Fig. 5. Values of NMI were estimated such that each revealed partition
was compared against (only) three intrinsic community structures—represented
by dashed lines in Fig. 5(a)—and the best correspondence was reported. (Note
that the results are thus actually rather pessimistic.) Observe that MPA can
accurately reveal the planted structure in all five cases—see legend in Fig. 5(b)—
which further confirms the adequacy of the proposed community model. More
precisely, in the first case, the intrinsic network structure results in a hierarchy of
link-pattern communities, whereas, in the second case, communities are in fact
defined on two levels of the designed hierarchy. In each of the last three cases,
the communities corresponds to a single level of the hierarchy. Thus, MPA can
indeed be employed for the detection of arbitrary community structure.

Random Graphs. We also apply the algorithms to Erdös-Rényi random graphs [12]
that presumably have no community structure. We fix the number of nodes to
128 and vary the average degree from 4 to 32. The results are shown in Fig. 6(a).
Note that, in contrast to MO(G), neither MPA nor GPA reports any community
structure for these networks—all nodes are classified into a single community.

Resolution Limit. We further analyze the algorithms on a resolution limit [16]—
existence of an intrinsic scale within the algorithm, below which the communities
are no longer recognized—test benchmarks networks [16]. Hence, the networks
consist of cliques with 4 nodes that are linked into a ring. Results in Fig. 6(b)
reveal that neither MPA nor GPA is seriously attributed to the resolution limit
issues, whereas, the opposite holds for MO(G). Although some fluctuations are
indeed observed for MPA, these are not as severe as in the case of modularity [16].



(a) Analysis on karate network [59] (b) Analysis on football network [18]

(c) Analysis on women network [9]

Fig. 7. Analysis of stability and complexity of MPA on three real-world networks
from Table 1. The values are estimates over at least 100 runs (note different scales).

Algorithm Stability. As previously discussed, random label update orders severely
hamper the stability of label propagation, and thus also the robustness of the re-
vealed community structure [54]. Hence, balanced propagation [51] is employed,
yet this introduces two parameters λ and µ (Section 3). Value of λ is intuitively
fixed to 1

2 (see Eq. (3)), while parameter µ in fact controls the stability of the
algorithm. In Fig. 7 we analyze MPA with respect to stability parameter µ on
three real-world networks from Table 1. Plots show pair-wise distance between
revealed community structures, and also the number of iterations for the algo-
rithm to converge (note different scales). Observe that increasing µ improves the
stability of MPA in all three networks, however, the number of iterations also
increases. Furthermore, as one would expect, when µ exceeds a certain thresh-
old, pair-wise distance between community structures notably increases—some
number of nodes already gets completely disregarded due to propagation prefer-
ences close to 0 (see Eq. (3))—while the number of iterations can also increase
substantially (see Fig. 7(b)). The transition occurs at around µ ≈ 4 for these
networks, thus, for the analysis throughout the paper, µ is set to 2 (if not stated
otherwise). It ought to be mentioned that balanced propagation can also improve
community detection strength of the basic label propagation [51] (see above).



(a) SB benchmark network (b) Analysis of community model in MPA

Fig. 8. Analysis of community modeling strategy of MPA on SB benchmark networks.
Node shapes represent planted network communities and are consistent among figures.
The values are estimates over 100 network realizations, while, for an adequate analysis,
we set ρ to 0 and increase µ (Section 3). See also text.

Community Modeling. For a comprehensive analysis, we also directly analyze
the proposed community modeling strategy of MPA on SB benchmark networks
with confusion degree set to 2 (see above). In particular, we measure the average
value of community parameter δc (Section 3) for the nodes in each of the planted
network communities. Results in Fig. 8 show that, at least for these networks,
values of community parameter δc clearly distinguish between link-density and
link-pattern regime—average δc is close to 1 and 0 for the nodes in link-density
and link-pattern communities, respectively. Note also that, due to lower aver-
age degree, values of δc are initially higher for the larger of the two link-pattern
communities. However, before the algorithm converges—average number of itera-
tions is shown by a horizontal line in Fig. 8(b)—community model in MPA infers
the same average value of δc for both link-pattern communities. Note also that
GPA cannot properly model communities planted in these networks (Fig. 3).

Computational Complexity. Basic label propagation and its advances exhibit
near linear time complexity O(|L|) [39], where |L| is the number of links in the
network. In particular, the exact complexity was estimated to around O(|L|1.2) [53].
Similarly, the proposed model-based propagation MPA exhibits complexity near
O(k|L|), where k is the average degree in the network. Although a thorough
empirical analysis is out of scope of this paper, based on the results in [53]
(and above), we estimate that MPA should scale up to networks with a million
links—accessible on a standard desktop computer within an hour.

Final Remarks. The above analysis on different benchmark networks and ran-
dom graphs indeed confirms that MPA can reveal arbitrary composites of either
link-density or link-patter communities, as long as they are clearly depicted in
the network’s topology. Moreover, the proposed community modeling strategy
also seems more adequate than the approach proposed by Šubelj and Bajec [52]



Table 1. Analysis on real-world networks subject to NMI estimated over 1000 runs (10
runs for software networks). Corporate network is reduced to the largest component,
while the known partition is also limited to 86 corporate nodes—we thus set µ to 1

2
.

Network Nodes Links Comm. MO(G) GPA MM(EM) MPA

Zachary’s karate club [59] 34 78 2 0.6925 0.7155 0.7870 0.8949
American college football [18] 115 616 12 0.7547 0.8769 0.8049 0.8919

Davis’s southern women [9] 32 89 4 0.7338 0.8332 0.8084
Scottish corpor. interlocks [46] 217 348 8 0.6634 0.5988 0.6411

Java (org namespace) [49] 709 3571 47 0.5029 0.5190 − 0.5187

Java (javax namespace) [49] 1595 5287 107 0.7048 0.7369 − 0.7386

for all networks considered. Further note that, although MPA is mostly outper-
formed by MM(EM) on the benchmarks above, the latter should be attributed
to the fact that MM(EM) is advised about the number of communities. However,
this currently cannot be properly estimated for large networks [23]. Moreover,
MPA also performs significantly better on real-world networks in Section 5.

5 Real-world examples

In the following we further employ the proposed algorithm for community de-
tection in different unipartite and bipartite social networks—classical and fully
link-pattern community detection, respectively—and also for a generalized com-
munity detection and predictive data clustering. All of the networks considered
below are regarded as unweighted and undirected.

Community Detection We first consider two classical networks for community
detection—a network of social interations between members of a karate club an-
alyzed by Zachary [59], and a network of interplays in the 2000 NCAA American
football schedule proposed in [18]—and two well-known bipartite networks—a
network of social collaborations between women in Natchez, Mississippi col-
lected by Davis [9], and a network of corporate interlocks in Scotland between
1904 and 1905 introduced in [46] (see Table 1). All these networks have known
natural community structures that results from earlier studies (see also Fig. 1).

Propagation algorithms—MPA and GPA—most accurately reveal the true
community structure for main of these networks (Table 1), whereas, community
modeling strategy of MPA again seems more adequate than that of GPA. Note
also that most values of NMI for MPA in Table 1 are considerably high.

Next, we also consider two software class dependency networks representing
org and javax namespaces of Java language compiled in [49]. Here, the natu-
ral community structure should coincide with respective software packages [49],
while these are expected to conform with link-density and also link-pattern



(a) Network adjacency matrix (b) Blockmodel—reordered adj. mat.

Fig. 9. Community structure of Java software network revealed with MPA (b).
Only communities with more than 24 nodes are shown, still, the structure con-
tains 1020 nodes and 4184 links. Link colors correspond to high-level software
packages—javax.swing, javax.management, javax.xml, javax.print, javax.naming,
javax.lang and other—while each dot was enlarged five times for better visibility.

regime [52]. Again, propagation algorithms most accurately extract the true net-
work structures (Table 1), whereas MM(EM) fails completely. In Fig. 9 we also
show the community structure of javax network revealed with MPA that obtains
NMI = 0.7431. Observe how communities rather agree with high-level software
packages, whereas, the majority of the links in the network is consistent with
the revealed structure. Interestingly, some packages contain mainly link-pattern
communities (e.g., javax.swing), while others are composed of only link-density
communities (e.g., javax.xml).

Data Clustering To apply community detection algorithm for data clustering,
the respective dataset must first be represented by a network using some measure
of similarity. According to [42], we adopt the inversed Chebyshev distance, with
initial [0, 1]-normalization. In order to obtain a sparse network, links must also be
thresholded accordingly. (Due to simplicity, we consider only unweighted versions
of the algorithms.) Note that the resulting network thus commonly decomposes
into several connected components, however, community detection algorithm can
still be employed to further partition these components (see Table 2).

We employ community detection to predict class variables of two famous
datasets—Iris plants dataset introduced by Fisher [14], and Ecoli protein local-
ization sites dataset [21]. For comparison, in Table 2 we also report the results for
a classical partitional clustering algorithm K-Means [29] (denoted KM). Observe
that MPA obtains extremely promising results on these datasets, while it also
significantly outperforms MM(EM) and KM that are both advised about the



Table 2. Analysis of data clustering on two real-world datasets subject to NMI and
FCC, respectively (estimated over 100 runs).

Dataset Items Classes Links Comp. KM MM(EM) MPA

Iris plants dataset [14] 150 3 2405 2
0.8234 0.8113 0.8264
0.8227 0.8196 0.8983

Ecoli protein dataset [21] 336 8 14685 4
0.5835 0.0797 0.6251
0.2530 0.0277 0.4164

number of communities. Still, the results could be further improved in various
ways. (Note that low NMI for MM(EM) on Ecoli dataset is not entirely evident.)

6 Conclusions

The paper proposes an enhanced community modeling strategy for a recently
introduced general propagation algorithm [52]. The resulting algorithm can de-
tect arbitrary network modules—ranging from link-density communities to link-
pattern communities—while, in contrast to most other approaches, it requires no
apriori knowledge about the true structure (e.g., the number of communities).
The algorithm was evaluated on various benchmark networks with planted par-
tition, on random graphs and resolution limit test networks, where it is shown to
be at least comparable to current state-of-the-art. Moreover, to demonstrate its
generality, the algorithm was also employed for community detection in differ-
ent unipartite and bipartite social networks, for generalized community detection
and data clustering. The results imply that the proposed community model pro-
vides an adequate approximation of the real-world network structure, although,
recent work suggests that network clustering and degree mixing could be even
further utilized within the model [48,17,55,41]. The latter will be considered for
future work. (For supporting website see http://lovro.lpt.fri.uni-lj.si/.)
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