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Metric graph theory is a study of geometric properties of
graphs based on a notion of the shortest path between the nodes
defined as the path through the smallest number of edges [2].
Metric graph properties lie in the heart of the analysis of com-
plex networks. Classical examples include Milgram’s experiment
of degrees of separation [8], node index called betweenness cen-
trality [5] and the small-world network model [11].

Independently of these efforts, graph theorists have been inter-
ested in understanding convexity in a given graph [6]. Consider
a simple connected graph and a subgraph on some subset of
nodes S. The subgraph is induced if all edges between the nodes
in S in the graph are also included in the subgraph. Next, the
subgraph is said to be isometric if at least one shortest path join-
ing each two nodes in S is entirely included within S. Finally,
the subgraph is a convex subgraph if all shortest paths between
the nodes in S are entirely included within S. Notice that any
convex subgraph is also isometric, while any isometric subgraph
must necessarily be induced.

We study convexity in complex networks through the defini-
tion of a convex subgraph [7]. We explore convexity from a
local and global perspective by analyzing the frequency of small
convex subgraphs and the expansion of randomly grown convex
subgraphs. In the case of the latter, we grow random connected
subgraphs one node at a time and expand them to convex sub-
graphs if needed. For instance, every connected subgraph of a
tree or a complete graph is convex and thus no expansion oc-
curs. Hence, the expansion of convex subgraphs quantifies the
presence of a tree-like or clique-like structure in a network.

We demonstrate three distinct forms of convexity in graphs
and networks. Global convexity refers to a tree-like or clique-like
structure of a network as a whole in which convex subgraphs
grow very slowly and thus any connected subgraph is likely to
be convex. Globally convex networks are spatial infrastructure
networks and network science coauthorship graph. In random
graphs [4], however, there is a sudden expansion of convex sub-
graphs when their size exceeds lnn/ ln 〈k〉 nodes, where n is the
number of nodes in a graph and 〈k〉 the average node degree. In
fact, the only network studied that is globally less convex than
a random graph is the Little Rock food web.

On the other hand, random graphs are locally convex meaning
that any connected subgraph with up to lnn/ ln 〈k〉 nodes is
almost certainly convex. Globally convex networks are also fairly
locally convex, or even more convex than random graphs under
a loose definition of local convexity, whereas almost any other
network studied is locally less convex than a random graph. Still,
most of these networks are regionally convex.

Regional convexity refers to any type of heterogeneous network
structure that is only partly convex. For instance, networks with
core-periphery structure can be divided into a non-convex c-core
surrounded by a convex periphery. Such are the Oregon Internet
map and C. elegans protein network. Note that this type of re-
gional convexity does not necessarily imply local convexity. This
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Expansion of convex subgraphs in graphs and networks.
(top) Expansion of convex subgraphs in a randomly grown tree
(diamonds), triangular lattice of the same size (squares) and
the corresponding random graph [4] (ellipses). Plots show the
fractions of nodes s(t) in the growing convex subgraphs at dif-
ferent steps t, s(t) ≥ (t + 1)/n. Graphs show particular real-
izations of convex subgraphs grown from the most central node
for 15 steps. (bottom) Expansion of convex subgraphs in a glob-
ally convex coauthorship graph, regionally convex Internet map
and non-convex food web. Plots show s(t) for empirical net-
works (diamonds), randomly rewired networks or the configu-
ration model graphs [10] (squares) and the corresponding ran-
dom graphs [4] (ellipses). Networks show realizations of convex
subgraphs, where diamonds represent the nodes included in the
growing subgraphs by construction, while squares are the nodes
included by expansion to convex subgraphs.

is because the nodes in convex periphery are generally discon-
nected and are connected only through the non-convex c-core.

We propose different measures of local, regional and global
convexity in networks. Among them, c-convexity can be used



to assess global convexity and measures whether the structure
of a network is either tree-like or clique-like, which is in con-
trast with the structure of a random graph. There are many
measures that separate networks from random graphs like the
average node clustering coefficient [11] and network modular-
ity [9]. However, these clearly distinguish between the tree-like
structure of infrastructure networks and the clique-like structure
of coauthorship graphs. Yet, the two regimes are equivalent ac-
cording to c-convexity. This is because they represent the border
cases of networks with deterministic structure.

Convexity is thus an inherent structural property of some net-
works. Random graph models [4, 10] and also standard network
models [11, 3] fail to reproduce convexity in networks. This is
not surprising as most models are based on the existence of indi-
vidual edges between the nodes and not on the inclusion of the
entire shortest paths. Development of models of convex networks
represents an important direction for future research.

Network convexity is an indication of the uniqueness of short-
est paths in a network. The shortest paths are mostly unique in
convex infrastructure networks due to high cost of connections,
while largely redundant in a non-convex food web in order for
the ecosystem to survive. Convex networks thus represent lo-
cally self-sufficient systems. As such convexity can be seen as
a measure of network redundancy, a concept closely related to
robustness and resilience [1].
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