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Abstract

In the past few years, the storage and the analysis of large-scale and fast evolving net-
works presents a great challenge. Therefore, a number of different techniques have been
proposed for sampling large networks. Studies on network sampling primarily analyze
the changes of network properties under the sampling. In general, network exploration
techniques approximate the original networks more accurate than random node and link
selection. Yet, link selection with additional subgraph induction step outperforms most
other techniques. In this paper, we apply subgraph induction also to random walk and
forest-fire sampling and evaluate the effects of subgraph induction on the sampling ac-
curacy. We analyze different real-world networks and the changes of their properties
introduced by sampling. The results reveal that the techniques with subgraph induc-
tion improve the performance of techniques without induction and create denser sample
networks with larger average degree. Furthermore, the accuracy of sampling decrease
consistently across various sampling techniques, when the sampled networks are smaller.
Based on the results of the comparison, we introduce the scheme for selecting the most
appropriate technique for network sampling. Overall, the breadth-first exploration sam-
pling proves as the best performing technique.

Keywords: complex networks, network sampling, comparison of sampling techniques,
subgraph induction, sampling accuracy, sampling selection scheme

1. Introduction

Real-world networks are often large and fast evolving. Therefore, not only their
storage poses a problem, but their analysis and understanding present a great challenge.
In the past few years, a number of different techniques have been proposed for sampling
large networks [1, 2]. With sampling, a network is reduced to a smaller sample, suitable
for efficient analysis [3, 4] and visualization [5, 6]. Moreover, the knowledge of sampling
process in networks can help to understand the network evolution [7] or to train prediction
models in link prediction [8, 9]. However, the data about analyzing networks can be
incomplete or networks can change quickly over time. Hence, it is of key importance
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Šubelj), marko.bajec@fri.uni-lj.si (Marko Bajec)

Preprint submitted to Physica A February 1, 2017



to understand the difference between complete original networks and their incomplete
variants.

Therefore, a number of studies on network sampling analyze the changes of network
properties under the sampling. For example, the preservation of degree distribution [10],
clustering distribution [10] or network connectivity [11]. Other studies analyze sampling
of specific sorts of networks, like sampling social [12] and online-social networks [13],
scale-free [14] and temporal networks [15] or weighted [16] and directed networks [17].
However, despite the efforts, the changes in network structure introduced by sampling
are still far from understood. Only a few studies focus on comparing the performance
of different sampling techniques. Leskovec et al. [1] observed network properties of the
original and sampled networks and compare them based on Kolmogorov-Smirnov D-
statistic. Lee et al. [2] analyzed how different sampling techniques under- or overestimate
network properties. Doer and Blenn [18] observed the convergence of network properties
across different sampling techniques. Hübler et al. [19] compared the properties of the
original and sampled networks based on different metrics, like Kolmogorov-Smirnov D-
statistic and L1 norm. On the other hand, Toivonene et al. [20] proposed a family of
compression methods for directed networks and compare them based on the time and
space complexity. In our previous study [21] we compare different sampling techniques
based on the preservation of network community structure. The results reveal that the
sampled networks exhibit stronger characterization by community-like groups than the
original networks; the changes in the node group structure occur consistently across
different sampling techniques.

In general, network exploration techniques like random walk and forest-fire sampling
approximate the original networks more accurately than random node and link selec-
tion [1]. Yet, Ahmed et al. [22] proposed the link selection with additional subgraph
induction step, where the sampled network consists of randomly selected links (i.e., ran-
dom link selection) and any additional links between their endpoints (i.e., subgraph
induction). Not only the performance of the random link selection is improved, but the
proposed technique also outperforms several other sampling techniques [22, 23].

In this paper, we apply subgraph induction also to random walk and forest-fire sam-
pling. We evaluate the effects of subgraph induction on the sampling accuracy. In
addition, we provide a comparison of various sampling techniques and their suitability
for preserving different network properties, including degree and clustering distribution,
average degree and density. The results reveal that in most cases the techniques with sub-
graph induction step improve the performance of techniques without induction. Based
on the results of the comparison, we introduce the sampling selection scheme, which sup-
ports the selection of the most appropriate technique for sampling particular network.

The rest of the paper is structured as follows. In Section 2, we present the background
on network sampling and expose the sampling techniques used in the study. The results
of the empirical analysis are reported and formally discussed in Section 3, while Section 4
concludes the paper and suggests directions for further research.

2. Network sampling

Let the network be represented by a simple undirected graph G = (V,E), where V
denotes the set of nodes (n = |V |) and E is the set of links (m = |E|). The goal of
network sampling is to create a sampled network G′ = (V ′, E′), where V ′ ⊂ V , E′ ⊂ E
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Table 1: Abbreviations for the sampling techniques.

RNS Random node selection
RND Random node selection based on degree
RLS Random link selection
RLI Random node selection with subgraph induction

BFS Breadth-first exploration sampling
FFS Forest-fire sampling
FFI Forest-fire sampling with subgraph induction
RWS Random walk sampling
RWI Random walk sampling with subgraph induction
MHRW Metropolis-Hastings random walk rampling
MHRWI Metropolis-Hastings random walk sampling with subgraph induction

and n′ = |V ′| << n, m′ = |E′| << m. The sample G′ is obtained in two steps. In the
first step, nodes or links are sampled using a particular strategy like random selection
and network exploration sampling. In the second step, the sampled nodes and links
are retrieved from the original network. The sampled network is called a subgraph of
the original network, if it consists of sampled nodes or sampled links only. Otherwise,
if sampled nodes and all their mutual links are included in the sample or the sample
consists of sampled links and any additional links among their endpoints, the sampled
network is called an induced subgraph of the original network (i.e., subgraph induction).

A large number of sampling techniques have been proposed in past years, suitable for
various purposes and for matching different network properties. The sampling techniques
can be roughly divided into two categories: random selection and network exploration
techniques. In the first category, nodes or links are included in the sample uniformly
at random or proportional to some particular characteristic like degree or PageRank [1].
In the second category, the sample is constructed by retrieving a neighborhood of a
randomly selected seed node using different strategies like breadth-first search [2] or
random walk [1]. The sampling techniques used in this paper are listed in Table 1 with
their abbreviations.

2.1. Random selection

For the purpose of this study, we consider four techniques from the random selection
category. We first adopt random node selection [1] (RNS), where the sample consists of
nodes selected uniformly at random and all their mutual links (Fig. 1(a)). RNS accu-
rately approximates the degree mixing [2] and preserves the relationship of transitivity
and density between the original and sampled networks [24]. Moreover, it shows better
performance on larger samples than on smaller [24]. Yet, RNS overestimates the degree
and betweenness centrality exponent and fails to match the clustering coefficient [2],
degree distribution [14] and the average path length [25] of the original network.

Furthermore, we adopt random node selection by degree [1] (RND), which improves
the performance of RNS. Here, the nodes are selected randomly with probability propor-
tional to their degrees and all their mutual links are included in the sample (Fig. 1(b)).
RND matches in-degree and out-degree distributions and also spectral properties of the
original network better than RNS [1]. Besides, it constructs samples with larger weakly
connected component [24]. Nevertheless, despite a fully connected original network, both
RNS and RND can construct a disconnected sampled network.
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(a) RNS (b) RND (c) RLS (d) RLI

Figure 1: Random selection techniques applied to a small toy network. Highlighted nodes and links
represent the samples obtained by different techniques. (a) In random node selection, the sample consists
of nodes selected uniformly at random and all their mutual links. (b) In random node selection by degree,
the nodes are selected to the sample with probability proportional to their degree, while all their mutual
links are included in the sample. (c) In random link selection, links are selected to the sample uniformly
at random. (d) In random link selection with subgraph induction, the sample consists of randomly
selected links (solid lines) and also any additional links between their endpoints (dashed lines).

Next, we adopt random link selection [1] (RLS), where the sample consists of links
selected uniformly at random (Fig. 1(c)). RLS matches well degree mixing [2] and the
distribution of sizes of weakly connected components [1]. It constructs sparse samples
and accurately approximates the average path length of the original network [23]. Yet,
RLS fails to match most of other network properties [1]. RLS overestimates the degree
and betweenness centrality exponent and underestimates the clustering coefficient [2].

We last adopt random link selection with subgraph induction [22] (RLI), which im-
proves the performance of RLS. Here, the sample consists of links selected uniformly at
random and any additional links between the endpoints of the sampled links (Fig. 1(d)).
RLI outperforms several other techniques in matching the degree, path length and clus-
tering coefficient distribution of the original networks [22]. It selects nodes with higher
degree more likely than other random selection techniques, which increases the connec-
tivity of the sample. Moreover, RLI is suitable for sampling large networks that can
not fit into the main memory and can also be implemented as a technique for sampling
streaming networks [23].

2.2. Network exploration

We consider seven sampling techniques from the network exploration category (note
that in the literature, this category of sampling techniques is also called topology based
sampling [22], traversal based sampling [26] or link-trace sampling [27]). First, we adopt
breadth-first exploration sampling [28] (BFS), where a seed node is selected uniformly
at random, while its broad neighborhood retrieved from the basic breadth-first search is
included in the sample. BFS is biased towards selecting nodes with higher degree [28],
yet it underestimates the degree and betweenness centrality exponent [2]. Second, we
adopt random walk sampling [1] (RWS), where the random walk is simulated on the
network, starting at a randomly selected seed node (Fig. 2(b)). The sample consists
of links, which are visited by a random walker and represents a connected subgraph
of the original network. RWS outperforms random selection techniques in matching the
transitivity [27], clustering coefficient distribution and spectral properties and also shows
good performance on smaller samples [1]. Yet, RWS is biased towards selecting nodes
with high degree [29] and fails to match the degree distribution [28].
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Next, we adopt forest-fire sampling [1] (FFS). Here, a broad neighborhood of a ran-
domly selected seed node is retrieved from partial breadth-first search (Fig. 2(d)). The
number of links sampled on each step is selected from a geometric distribution with mean
p/(1−p), where p is set to 0.7 [1]. Thus, on average 2.33 links are included in the sample
on each step. FFS matches well spectral properties [1] and together with RWS shows
the best overall performance among several techniques [1]. However, FFS fails to match
the path length and clustering coefficient of the original networks [23].

Moreover, we apply subgraph induction step to random walk and forest-fire sampling,
which we term random walk sampling with subgraph induction (RWI) and forest-fire
sampling with subgraph induction (FFI). Here, the samples consist of links, sampled
with random walk (Fig. 2(c)) or forest-fire (Fig. 2(e)), while also any additional links
among the endpoints of the sampled links are included in the sample. To the best of
our knowledge, RWI has not been analyzed in any of the previous studies. On the other
hand, FFI shows worse performance than RLI in matching the path length, degree and
clustering distributions [23]. Still, the performance of FFI has not yet been compared to
a larger set of sampling techniques.

Additionaly, we adopt Metropolis-Hastings random walk [30] (MHRW), where the
random walk is simulated on the network, starting at a randomly selected seed node
(Fig. 2(b)). On each step, the next-hop node is selected uniformly at random among
neighbours of current node or random walker performs a self-loop instead of moving to
other node. MHRW correct the bias of RWS, where the nodes with higher degree are
more likely to be selected to the sample [31]. MHRW performs better on well connected
networks and performs poorly on the networks with high community structure, since it
frequently stuck in a local community [32].

Lastly, we apply subgraph induction step to MHRW, which we term Metropolis-
Hastings random walk with induction (MHRWI). Here, the sample consists of links,
sampled with MHRW (Fig. 2(c)), while any additional links among the endpoints of
sampled links are also included in the sample. To the best of our knowledge, MHRWI
has not been analyzed in any of the previous studies.

3. Analysis and discussion

In the following sections, we describe the adopted social, biological and information
networks (Section 3.1), report the results of the empirical analysis and discuss the findings
(Section 3.2). Last, we combine the results in the sampling selection scheme (Section 3.3).

3.1. Network data

The analysis is performed on 12 social and information networks. Their main char-
acteristics are presented in Table 2. In collaboration networks, the nodes represent the
authors, while undirected links denote that two authors co-authored at least one paper
together. The ca-hep [33] and ca-astro [33] are collaboration networks among researchers,
who submitted their papers to arXiv High Energy Physics and Astro Physics category
respectively. The ca-dblp [34] is a collaboration network among the authors of papers
in computer science. Biological networks yeast [35] and human [35] are the interaction-
interaction networks among proteins in S. cerevisiae and H. sapiens, respectively. The
nodes in both networks represent proteins, while the links denote interactions among
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(a) BFS (b) RWS, MHRW (c) RWI, MHRWI

(d) FFS (e) FFI

Figure 2: Network exploration techniques applied to a small toy network. Highlighted nodes and links
represent the samples obtained by different techniques. (a) In breadth-first exploration sampling the
broad neighborhood of a randomly selected seed node is retrieved using breadth-first search. (b) In
random walk sampling, the sample consists of links, retrieved from a simulation of a random walker
on the network starting at a randomly selected seed node. In Metropolis-Hastings random walk, the
random walk is performed similarly to random walk sampling with the possibility of performing a self-
loop instead of moving to the other node on each step.(c) In random walk and Metropolis-Hastings
random walk sampling with subgraph induction, the sample consists of links selected with random walk
sampling or Metropolis-Hastings random walk (solid lines) and also any additional links between their
endpoints (dashed lines). (d) In forest-fire sampling, the broad neighborhood of a randomly selected
seed node is retrieved using partial breadth-first search, where only a fraction of links is included in
the sample on each step. (e) In forest-fire sampling with subgraph induction, the sample consists of
links selected with forest-fire sampling (solid lines) and also any additional links between their endpoints
(dashed lines).

them. The cit-hep [36] is a citation network from the arXiv category High Energy
Physics, where the nodes represent papers and the links denote that papers cite each
other. The networks brightkite [37], slashdot [38] and youtube [39] are social networks
from providers Brightkite, Slashdot and Youtube, respectively. The nodes represent
users, while the links denote friendships between them. The email [33] network is cre-
ated using email data from the European Research Institution, where email addresses
are linked, if at least one message was sent among them. The nd.edu [40] network is the
web graph of nd.edu domain, where the nodes represent web pages and the links mean
hyperlinks between pages. The flickr [41] network contains images from image hosting
website Flickr. The nodes represent images, while the links denote that the images share
the same metadata, for example location, the author or the album of the image.

All networks are considered to be undirected, although some of them are directed.
We consider sample sizes from 0.2% to 20% of the original networks (0.2-1% by step
of 0.2% and 2-20% by step of 2%). The exception are MHRW and MHRWI sampling
techniques, where we limit the number of steps in the algorithm to 0.2% to 20% of the
original networks sizes and thus the samples obtained with MHRW and MHRWI are
smaller. For each network we perform 100 realizations of each sampling technique and
each sample size. For each run of the exploration techniques, the sample was constructed

6



Table 2: Real-world networks considered in the study.

Network Nodes Links
Average Clustering

Density
degree coefficient

yeast 5,717 48,259 16.9 0.068 2.9× 10−3

ca-hep 12,008 237,010 39.5 0.660 3.3× 10−3

human 15,921 220,019 27.6 0.021 1.7× 10−3

ca-astro 18,772 396,160 42.2 0.318 2.2× 10−3

cit-hep 27,240 342,437 25.1 0.120 9.2× 10−4

brightkite 58,228 214,078 7.4 0.111 1.3× 10−4

slashdot 82,168 948,464 23.1 0.024 2.8× 10−4

flickr 105,938 2,316,948 43.7 0.402 4.1× 10−4

email 265,214 420,045 3.2 0.004 1.2× 10−5

ca-dblp 317,080 1,049,866 6.6 0.306 2.1× 10−5

nd.edu 325,729 1,497,134 9.1 0.097 2.8× 10−5

youtube 1,134,890 2,987,624 5.2 0.006 4.5× 10−6

from a new randomly selected seed node.

3.2. Empirical analysis

We observe the different properties of the original and sampled networks, including
listed four:

• Degree distribution refers to the probability distribution of degrees of all nodes in
the network. The degree of a node is the number of node neighbours, the quantity
pk is the fraction of nodes having degree k, k > 0. The quantities pk represents
degree distribution of the network.

• Distribution of clustering coefficient refers to the probability distribution of the
proportions of connected neighbors of each node [42]. The clustering coefficient of
a node is the ratio of the triangles connected to the node and the maximum number
of triangles that could pass through the node, while for distribution a frequency
count of the occurrence of each clustering coefficient is provided.

• Average degree refers to the average number of neighbours of nodes over the whole
network.

• Density refers to the ratio of existing links to all possible links among all the nodes
in the network.

We first analyze the performance of sampling techniques based on the match of the
degree and clustering coefficient distributions between the original and sampled net-
works. To compare the distributions, we use Kolmogorov-Smirnov D-statistic, which is
commonly used in similar studies [1, 23, 24]. Kolmogorov-Smirnov test checks the null
hypothesis that the distributions of property of the original network and its sampled
variant are the same, while the D-statistic measures the distance between the observed
distributions. Next, we analyze the performance of sampling techniques in matching the
average degree and density between the original and sampled networks. We compare
both properties according to the actual values in original and sampled networks. Fi-
nally, we compare sampling techniques for each property with the assessment approach
proposed in [24], where the sampling techniques are ranked based on the similarities
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between the original and sampled networks. In particular, the proposed asses obtains
the best technique for preserving particular property with ranking all techniques based
on D-statistic (for the degree and clustering distribution) or actual values of property
(for the average degree and density): the technique with the smallest D-statistic or value
of the property gets rank 0, the second one gets rank 1, and so on. In the next step,
the ranks are summed and divide by the greatest possible rank. The technique with the
lowest result is assumed as the best for preserving particular property. The results of
comparison are presented in Table 3.

The comparison of sampling techniques based on the degree distribution is shown in
Fig. 3. We observe a clear difference between the techniques with subgraph induction
step (i.e., RNS, RND, RLI, BFS, RWI, FFI) and those without induction (i.e., RLS,
RWS, FFS). The first group of techniques approximates the degree distribution of the
original networks more accurately. In addition, the techniques with induction improve
the performance of the corresponding techniques without it. The induction increases
the degrees of the nodes in the sample [22], which contribute to a better match of the
degree distribution between the original and sampled networks. In general, the best
performing techniques are BFS and RWI (see also Table 3). Among the techniques
without induction, RWS shows the best performance, which could be explained by its
bias towards selecting high degree nodes and exploring densely connected parts of the
network [1]. In contrast, the samples constructed by FFS and RLS are sparse, a large
fraction of the nodes in the samples has low degree, while the number of nodes with higher
degree is underestimated [22]. Accordingly, both techniques are the least accurate.

The results also reveal that the accuracy of preserving the degree distribution fails
for the sampled networks with less than 1% of the nodes from the original networks.
Irrespective of used sampling technique and consistently across all networks, under this
particular sample size, the sampled networks evolve into small, unconnected networks,
which results in a lower similarity between the original and sampled networks. The latter
is clear also for other analyzed properties.

The comparison of sampling techniques based on the clustering distribution is shown
in Fig. 4. In general, all sampling techniques show weaker performance in preserving
the clustering distribution than in the case of the degree distribution. However, the
most accurate are again techniques with induction, which improve the performance of
techniques without induction. Still, for the slashdot network FFS preserves the clustering
distribution best, while for youtube and email FFI and RLI perform the worst. The
transitivity of these networks is lower than for other networks (see Table 2). For this
reason, the techniques that create samples with larger transitivity perform worse. Among
all techniques, BFS and RWI perform the best (see also Table 3), while RNS shows the
worst performance. The latter could be explained by its tendency to construct samples
with a large number of nodes with low clustering [22].

Fig. 5 shows the comparison of sampling techniques based on the average degree.
The results prove that the techniques with induction overestimate the average degree
of the original networks, which is the result of including additional links in the sample.
In general, BFS and RWI perform the best (see also Table 3). On the other hand, the
techniques without induction and RNS tend to underestimate the average degree. They
create sampled networks with average degree lower than 5, which follows also from their
definition. In detail, RLS creates unconnected and sparse samples with low average
degree [23]. The samples constructed with RNS consist of a large fraction of low-degree
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Figure 3: Comparison of the degree distribution of the original networks and their sampled variants
obtained by different sampling techniques. Notice that techniques with induction (full markers) approx-
imate the degree distribution more accurately than the techniques without induction (empty markers)
in most cases.
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Figure 4: Comparison of the clustering coefficient distribution of the original networks and their sampled
variants obtained by different sampling techniques. Notice that techniques with induction (full markers)
improve the performance of the corresponding techniques without induction (empty markers).
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Figure 5: Comparison of the average degree of the original networks and their sampled variants obtained
by different sampling techniques. The horizontal (blue) lines mark average degree of the original net-
works. Notice that techniques with induction (full markers) tend to overestimate the average degree,
while the techniques without induction (empty markers) underestimate it.

11



--

Figure 6: Comparison of the density of the original networks and their sampled variants obtained by
different sampling techniques. The horizontal (blue) lines mark density of the original networks, while
the diagonal (green) lines mark the power-law relationship between the size and density of real-world
networks and their sampled variants [43]. Notice that the sampled networks are denser than the original
networks in most cases. The techniques with induction (full markers) create denser samples that the
techniques without it (empty markers).
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nodes [22] and have a low average degree particularly in the smaller samples [2]. In RWS
it is unlikely to occur that the random walker usea same node twice, while at FFS we
set the parameter to 0.7 as suggested in [1], thus on each step 2.33 links are selected in
the sample on average.

Fig. 6 shows the comparison of the sampling techniques based on the density. In the
previous study [43], we proved the power-law relationship between the size and density
of real-world networks and their sampled variants. The power-law relationship indicates
that network density decreases with its size. In general, all techniques overestimate
the density of the original networks. Yet, the techniques with induction create denser
samples, while the techniques without induction construct sparser samples than expected
by the power-law relationship. Therefore, the accuracy of the sampling techniques based
on the density is relative and depends on whether the samples should accurately match
the density of the original networks (like RNS) or the sampled networks should be denser
than original and their density should follow the power-law relationship between the size
and density (like BFS).

Additionally, we adopt MHRW sampling with and without induction, marked with
gray markers on Fig. 3, 4, 5 and 6. Since the computationally complex implementation
of the algorithm, we limited the number of steps instead of the number visited nodes in
the random walk. Thus, the sampled networks with MHRW and MHRWI are smaller
than the other samples. The results reveal the technique with induction improve the
performance of MHRW without induction for degree and clustering distribution and the
average degree. MHRWI shows good performance at preserving the clustering distri-
bution of small samples (for the sample sizes under 5% of the original networks sizes).
However, the performance of MHRW is comparable to the performance of FFS and RWS
in most cases, which is expected due to the random walk basis of all three techniques.
Observing the density preservation, MHRW and MHRWI show the most unstable per-
formance; MHRW creates sparser samples than MHRWI.

In general, BFS and RWI show the best overall performance in preserving degree and
clustering distribution and also average degree. The performance of both techniques is
stable and on the analyzed set of networks it does not depend on the network type. On the
other hand, the preservation of density is not straightforward, since it depends on further
use of the sample. However, the results reveal the techniques without induction create
sparser samples with a lower average degree. The techniques with induction show the
opposite behavior, since they construct denser sampled networks with a higher average
degree. In other words, the real average degree and the density of the original networks
lay between both regimes. It seems that we could obtain the closest value for the average
degree and the density of original network if we create two samples, one with the specific
technique without induction and the other with the same technique with induction, and
average the values for both samples.

Next, we also investigate two other ideas. First, we analyze the performance of
the techniques with partial subgraph induction, where we include a different portion of
mutual links between the sampled nodes in the sample (i.e., we randomly select 10%-90%
links from all possible links). The results are not described in detail, since the techniques
with partial induction did not improve the performance of the techniques with induction
and they did not perform worse than techniques without induction. Second, for the
case of exploration techniques, we study the influence of seed node selection on sampling
accuracy. Particularly, we explore the changes in sampling performance if the nodes with
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Table 3: The best and second-best techniques for the preservation of network properties.

Property
Study from [24] This study

Best Second-best Best Second-best

Degree distribution BFS RND BFS (0.152) RWI (0.281)
In-degree distribution RND/BFS RLS – –
Out-degree distribution RND BFS – –
Clustering distribution RND BFS BFS (0.281) RWI (0.282)
Betweenness BFS RND – –
Density RNS BFS RNS (0.021) RLS (0.125)
Degree mixing BFS RNS – –
Transitivity RNS RND – –
Average degree – – BFS (0.229) RWI (0.302)

larger or lower degree are more likely to be selected for the seed. The results reveal that
this modification does not affect the performance of sampling and we thus only present
results for random seed node selection.

Last, we review the time complexity of the adopted sampling techniques. Due to
the several programming languages used for implementation and different computers we
worked on, the running times of the algorithms are not comparable. However, assuming
an efficient representation of the networks (e.g. adjacency list or edge list representation)
and excluding the time needed for construction of the samples (which is proportional to
the sample size), the time complexities of the techniques are following:

• RNS, RND: O(v) (assuming edge list representation, so node can be sampled in
constant time)

• RLS, RLI: O(e)

• BFS, FFS, FFI: O(v + e)

• RW, RWI: O(v + e) (assuming node sampling without replacement)

• MHRW, MHRWI: O(v3) [44] (in worst case)

where v denotes the number of nodes in the sample and e denotes the number of links
in the sample.

The running time of the naive algorithm for computing the clustering coefficient is
O(n3) [10], where n denotes number of nodes in the original network. Computing different
centrality measures, like betwenness and eigenvector centrality, has similar computational
complexity [45]. For example, in the sampled network with 10% of the original network
size, the computational time for clustering coefficient is of order 1000 times lower than
in the original network.

3.3. Sampling selection scheme

In the following, we compare sampling techniques using a measure, that ranks tech-
niques based on their suitability for preserving different network properties [24]. The
comparison is performed for the samples of 10% of the original network sizes. This size
proved to be appropriate for suitable preservation of network properties and at the same
time the samples are sufficiently small for fast and efficient analysis. The results of the
study [24] are presented in Table 3, abbreviations for sampling techniques are explained
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Figure 7: The sampling selection scheme for choosing the most appropriate sampling technique for sam-
pling specific network based on which properties should be preserved under sampling. Darker rectangles
denote network properties, while lighter rectangles represent sampling techniques (see Table 1 for abbre-
viations). Solid links between nodes corresponds to the best technique for preserving specific property,
while dashed links denote second-best choice.

in Table 1. Among all, BFS and RND proved the best, since they preserve the most the
majority of analyzing properties.

Using described measure we compare the techniques with induction and without it
and analyze their suitability for preserving each of the properties (i.e., the degree and
clustering distribution, average degree and density). The analysis is performed on the
samples of 10% of the original network size as suggested in [24]. The results are presented
in Table 3. BFS and RWI prove as the best performing techniques; BFS preserves
the most degree and clustering distribution and average degree, while RNS is the most
appropriate choice for preserving the density of the original networks. In addition, we
observe the rankings of techniques for other sample sizes. The results reveal the same
techniques are the best also for other sizes (detailed results are omitted). The noticeable
differences occur for smaller samples under 1% of the original network size, at which all
sampling techniques perform worse.

Finally, we combine listed results from Table 3 into the sampling selection scheme,
presented in Fig. 7. The scheme supports choosing the most appropriate technique for
sampling specific network regarding the properties that should be preserved under sam-
pling. In the scheme, rectangles represent sampling techniques and network properties,
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while the links between them corresponds to the best or second-best choice for preserving
specific property. For example, average degree is best preserved by BFS. On the other
hand, clustering distribution is best preserved by BFS or RND. Thus, the choice between
both techniques depends also on other properties, which should be preserved under sam-
pling. In general, BFS proves to be the most appropriate technique for network sampling,
since it best preserves the majority of observed properties.

4. Conclusion

In this paper, we analyze different real networks and study the changes of their
properties introduced by network sampling. We consider six basic sampling techniques,
including random node and link selection and exploration techniques based on random
walk and breadth-first sampling. We also apply subgraph induction to random link
selection, random walk sampling and forest fire and compare the techniques based on
the match of properties between the original networks and their sampled variants.

The results reveal that the sampling techniques with induction step approximate
the degree and clustering coefficient more accurately than techniques without induc-
tion. Moreover, the techniques with induction step improve the performance of the
corresponding techniques without induction. The techniques with induction also create
denser samples with larger average degree. Particularly, they tend to overestimate the
average degree and the density of the original networks. On the other hand, the tech-
niques without induction underestimate the average degree and the density. According
to these results, it appears that the performance of the techniques from random selection
category compared to network exploration sampling does not differ significantly, while
clear differences exist between the techniques with subgraph induction step and without
it. Furthermore, the accuracy of sampling decrease consistently across various sampling
techniques, when the sampled networks contain less than 1% of nodes from the original
networks. Finally, based on the results of this analysis and study in [24], we introduce a
sampling selection scheme. The scheme supports the selection of technique for sampling
particular network regarding the properties that should be preserved under the sam-
pling. The breadth-first exploration sampling proves as the best performing technique
for preserving the majority of the observed properties.

However, the accuracy of sampling techniques does not depend only on the character-
istics of the adopted technique, but also on the characteristics of the original networks.
For example, the techniques with induction match the degree distribution of the net-
works with higher average degree more accurately than when the average degree is lower.
To confirm the hypothesis, the relation should be observed in a larger set of real-world
networks. Besides, a prominent direction for further study is broader analysis of the time
and space efficiency of sampling techniques since fitting even a sampled network in the
memory becomes challenging with significant growth of real-world networks in the past
few years.

Acknowledgment

This work has been supported by the Slovenian Research Agency ARRS within the
Research Program No. P2-0359.

16



References

[1] J. Leskovec, C. Faloutsos, Sampling from large graphs, in: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM, 2006, pp. 631–636.

[2] S. H. Lee, P. J. Kim, H. Jeong, Statistical properties of sampled networks, Phys. Rev. E 73 (1)
(2006) 016102.

[3] V. Krishnamurthy, M. Faloutsos, M. Chrobak, L. Lao, J.-H. Cui, A. G. Percus, Reducing large inter-
net topologies for faster simulations, in: Proceedings of the 4th International IFIP-TC6 Networking
Conference, Springer, 2005, pp. 328–341.

[4] C. Bennett, More efficient classification of web content using graph sampling, in: IEEE Symposium
on Computational Intelligence and Data Mining, IEEE, 2007, pp. 485–490.

[5] D. Rafiei, Effectively visualizing large networks through sampling, in: Visualization, IEEE, 2005,
pp. 375–382.

[6] D. Hennessey, D. Brooks, A. Fridman, D. Breen, A simplification algorithm for visualizing the
structure of complex graphs, in: Proceedings of the 12th International Conference on Information
Visualisation, IEEE, 2008, pp. 616–625.

[7] S. Tabassum, J. Gama, Sampling evolving ego-networks with forgetting factor, in: Proceedings of
the 17th Conference on Mobile Data Management, Vol. 2, IEEE, 2016, pp. 55–59.

[8] L. Lü, T. Zhou, Link prediction in complex networks: A survey, Physica A 390 (6) (2011) 1150–1170.
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