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Abstract

Many real systems can be described by a set of interacting entities forming a complex
network. To some surprise, these have been shown to share a number of structural
properties regardless of their type or origin. It is thus of vital importance to design
simple and intuitive models that can explain their intrinsic structure and dynamics.
These can, for instance, be used to study networks analytically or to construct networks
not observed in real life. Most models proposed in the literature are of two types. A
model can be either static, where edges are added between a fixed set of nodes
according to some predefined rule, or evolving, where the number of nodes or edges
increases over time. However, some real networks do not grow but rather shrink,
meaning that the number of nodes or edges decreases over time. We here propose a
simple model of shrinking networks called the war pact model. We show that networks
generated in such a way exhibit common structural properties of real networks.
Furthermore, compared to classical models, these resemble international trade,
correlates of war, Bitcoin transactions and other networks more closely. Network
shrinking may therefore represent a reasonable explanation of the evolution of some
networks and greater emphasis should be put on such models in the future.

Introduction 1

The most natural representation of many real complex systems is a network of nodes 2

connected by edges also called a graph in discrete mathematics. Despite being a very 3

simplistic representation, networks have given us a better understanding of complex 4

real-world phenomena such as epidemic spreading of diseases [1, 2], small-worlds of 5

human society [3, 4], mobility and navigation [5, 6], emergence of complex 6

organization [7, 8], robustness and controllability of manmade technology [9, 10], and the 7

structure of science [11], to name just a few examples. Indeed, the networks have proven 8

to be an invaluable tool for data analysis in the last two decades [12]. 9

One of the key reasons for the successes mentioned above is the realization that real 10

networks share a number of structural properties regardless of their type or origin. For 11

instance, most real networks exhibit a scale-free structure like power-law node degree 12

distribution [7, 13], short distances between the nodes called the small-world 13

structure [3, 4], resilience or robustness to targeted attacks [9], pronounced mixing 14

between the nodes [14,15], a distinctive mesoscopic network structure [16,17], 15

characteristic node connection patterns [18,19] and a key position or centrality of a 16
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small number of nodes [20, 21]. It is therefore a common belief that real networks form 17

according to some shared rules or principles giving rise to these complex structures. 18

The network science literature is abundant with generative models of network 19

formation that try to explain their intrinsic structure and dynamics. Most network 20

models are static, meaning that edges are added between a fixed set of nodes according 21

to some predefined rule. These include the simplest Erdős-Rényi random graphs [22], 22

and somewhat more realistic configuration [23], hierarchical [24], geometric [19] and 23

optimization [25] graphs that can already explain some non-trivial properties of real 24

networks. Moreover, stochastic block models [26] can generate networks with an 25

arbitrary mesoscopic structure. However, greater insights into the structure and 26

dynamics of real networks were actually obtained with evolving network models where 27

the number of nodes or edges increases over time. Most well-known examples of 28

evolving models are undoubtedly the Price cumulative advantage model [13], the 29

Barabási-Albert scale-free networks [7] and the copying network model [27]. 30

On the other hand, some real networks do not grow but rather shrink, meaning that 31

the number of nodes or edges decreases over time. Apart from a few exceptions, such 32

as [28], shrinking network models have been largely neglected in the literature [29]. To 33

fill this gap, we here propose a simple model of shrinking networks called the war pact 34

model. The model starts with some fixed number of edges and the maximal possible 35

number of nodes, hence the initial seed network is a perfect matching. The nodes are 36

then iteratively merged until the desired number of nodes is obtained. We show that 37

networks generated by the war pact model match the most common properties of real 38

networks. More importantly, the model provides an intuitive explanation of the 39

evolution of diverse real networks. The paper therefore puts forth an intriguing question 40

whether growing or shrinking models explain the evolution of real networks better. 41

Materials and methods 42

The present section describes networks, models and methods used in the paper. We 43

start with a detailed description of the war pact model and its implementation. Next, 44

we introduce four real networks used for empirical validation of the model and 45

alternative random graph models used for comparison. Finally, we review two 46

information-theoretic measures used for comparing networks or graphs. 47

War pact model 48

The top row in Fig 1 shows a diagram of a particular realization of the war pact model. 49

The model starts with an initial seed network which is a perfect matching of nodes with 50

some predefined number of edges. The model then iteratively merges the nodes until 51

one obtains a network with the desired number of nodes. Note that the number of edges 52

stays fixed during the evolution of the model, while the number of nodes decreases by 53

one in each step. The nodes to be merged in each step can be selected uniformly at 54

random, preferentially according to their degrees or using some other selection rule. 55

More formally, let n and m be the desired number of nodes and edges, where 56

2m ≥ n. The model starts with m edges connecting 2m nodes as in Fig 1. In each step, 57

the model merges two nodes i and j into a newly added node k by first replacing nodes 58

i and j with node k and then connecting the neighbors of nodes i and j to node k. The 59

model proceeds for 2m− n steps when the number of nodes equals n. 60

As shown in the bottom row in Fig 1, the model can generate a rich local structure 61

depending on the distance d between the nodes being merged. Merging nodes at 62

distance d = 1 (i.e. an edge) creates a self-edge, which is not allowed, merging nodes at 63

distance d = 2 creates parallel edges and thus a multigraph, while merging nodes at 64
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Initial network First step Final networkSecond step

TrianglePath of length d = 3Parallel edgesPath of length d = 2Self-edgeEdge with d = 1

Fig 1. War pact model. (top) Realization of the war pact model network with n = 5
nodes and m = 4 edges. The nodes selected for merging in each step are shown with
filled ellipses, while the sizes of the nodes are proportional to their degree k. (bottom)
Examples of the merging procedure for nodes at different distances d.

distance d = 3 creates a triangle resulting in non-trivial network clustering [4]. In 65

general, merging nodes at distance d creates a cycle on d nodes. 66

The war pact model is free from parameters. Nevertheless, one can still freely choose 67

the strategy of selecting the nodes to be merged in each step and also the initial state of 68

the model. In the letter case, initializing the model with a perfect matching as above is 69

somewhat artificial and not realistic in practice. However, as we show in the Results 70

and discussion section, the particular choice of the model initialization has no apparent 71

effect on the final structure of the generated networks. For this reason, the model is 72

initialized with a perfect matching unless explicitly stated otherwise. 73

On the other hand, the particular choice of the node selection rule can have a 74

profound effect on the structure of the generated networks. Therefore, we consider four 75

different node selection rules that proved reasonable in practice. In particular, the two 76

nodes to be merged can be selected uniformly at random among all nodes (denoted RR 77

model) or preferentially according to their degrees (KK model). Hence, a node is 78

selected with the probability proportional to k, where k is the current degree of the 79

node. Finally, we also consider two mixed rules where the first node is selected with the 80

probability proportional to its degree k, while the second node is selected uniformly at 81

random (KR model) or with the probability proportional to its inverse degree k−1 (KI 82

model). Other possible rules either do not generate realistic networks or we could not 83

find an intuitive explanation for such a model. 84

For a visual representation, Fig 2 shows layouts of three particular realizations of the 85

war pact model networks. In all three cases, the first node is selected with the 86

probability proportional to its degree k, whereas the second node is selected with the 87

probability proportional to its degree k, inverse degree k−1 or uniformly at random (KK, 88

KI and KR models, respectively). Notice that clusters revealed with Bayesian stochastic 89

blockmodeling [30] show diverse mesoscopic structures of these networks ranging from 90

hub and spokes arrangements to a community and core-periphery structure. 91

The implementation of the war pact model is relatively straightforward using the 92

hash map H as shown in Algorithm 1. Each node of graph G is represented by its hash 93

value h ∈ H initialized as H(i) = i for each node index i = 1, . . . , 2m (lines 4-5). Note 94

that each hash value h ∈ H corresponds to a unique node in graph G and each node has 95

a unique hash value. Merging two nodes H(i) and H(j) then merely requires unifying 96

their hash values as H(i) = H(j) and updating graph G accordingly (lines 12-13). For 97
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Fig 2. Layouts of war pact networks. Wiring diagrams of the largest connected
components of the war pact model networks with n = 1 000 nodes and the average
degree 〈k〉 = 10. The sizes of the nodes are proportional to their degree k, while the
colors of the nodes show the clusters revealed with stochastic blockmodeling. The
layouts were computed with the Large Graph Layout [31].

Algorithm 1 War pact model

Input: nodes n and edges m
Output: graph G
1: H ← empty map {Define empty map representing nodes.}
2: G← empty graph {Define empty war pact model graph.}
3: for i ∈ [1,m] do
4: H(i)← i and H(m+ i)← m+ i {Map nodes’ indices to their hashes.}
5: add nodes H(i) and H(m+ i) to G {Add nodes (i.e. hashes) to graph.}
6: add edge {H(i), H(m+ i)} to G {Create perfect matching of nodes.}
7: end for
8: while G has > n nodes do
9: h← Random(H) {Select random hash (i.e. random node).}

10: i← Random([1, 2m]) {Select random index (i.e. node by degree).}
11: if h 6= H(i) and edge {h,H(i)} /∈ G then
12: merge nodes h and H(i) in G {Merge selected nodes by rewiring edges.}
13: H(i)← h {Unify hashes of selected nodes.}
14: end if
15: end while
16: return G

choosing a node uniformly at random, one selects a random hash value h ∈ H (line 9), 98

while if choosing a node with the probability proportional to its degree, one selects the 99

hash value H(i) of a randomly selected node index i ∈ [1, 2m] (line 10). The 100

pseudocode in Algorithm 1 assumes that graph G is initialized with a perfect matching 101

of nodes (line 6) and ensures that no self-edges are created during the evolution of the 102

model (line 11). Note that, in practice, one should use a disjoint-set data structure 103

instead of a hash map to ensure a near-constant time complexity of all operations. 104

Networks and models 105

For empirical validation of the war pact model, we consider four real networks of 106

different types and origins. The networks represent international trade consisting of the 107

strongest food import and export relations between countries from the Food and 108

Agricultural Organization of the United Nations [32], historical records of international 109

wars, non-military conflicts, border disputes and other disagreements between national 110

alliances during 1996 collected by the Correlates of War project [33], Bitcoin 111

transactions between the most active users (i.e. clusters of coappearing input addresses) 112
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Table 1. Statistics of real networks. Standard statistics of real networks analysed in the paper.

Network n m LCC 〈k〉 〈C〉 〈d〉 dmax r Q

Correlates of war 41 54 87.8% 2.63 0.28 2.58 8 −0.29 0.60
International trade 130 3 730 100.0% 57.38 0.50 2.24 5 −0.07 0.21
Bitcoin transactions 1 288 6 236 98.8% 9.68 0.33 2.83 9 −0.28 0.39
Autonomous systems 3 213 11 248 100.0% 7.00 0.18 3.77 9 −0.22 0.64

between 2012 and 2013 parsed from the public ledger [34], and the Internet map at the 113

level of autonomous systems on the first day of 1998 reconstructed from the University 114

of Oregon Route Views project [35]. Networks are represented with undirected graphs 115

with self-edges and isolated nodes removed. 116

Table 1 shows the standard statistics of the analysed networks. These are the 117

number of nodes n and edges m, the average node degree 〈k〉 = 2m/n, the fraction of 118

nodes in the largest connected component LCC, the average node clustering coefficient 119

〈C〉 = 1
n

∑
i Ci [4] with the clustering coefficient of node i defined as Ci = 2ti

ki(ki−1) , 120

where ti is the number of triangles including node i and ki > 1 is its degree, the average 121

distance between the nodes 〈d〉 = 2
n(n−1)

∑
i<j dij , where dij is the number of edges in 122

the shortest paths between nodes i and j, the maximal distance or diameter 123

dmax = maxi<j dij , the node degree mixing coefficient r [14] defined as the Pearson’s 124

correlation coefficient of the degrees of connected nodes and the modularity of network 125

community structure Q = 1
2m

∑
ij(Aij −

kikj
2m ) δ(ci, cj) [36], where A is the network 126

adjacency matrix, ci is the community label of node i and δ is the Kronecker delta. The 127

modularity Q is reported as the average over 100 runs of the Leiden algorithm [37]. 128

The war pact model is compared against three classical random graph models. The 129

first is the Erdős-Rényi random graph model [22], where an edge is put between each 130

pair of n nodes with a probability of 〈k〉/(n− 1). Next is the Barabási-Albert scale-free 131

model [7], where n nodes are added one at a time and each forms 〈k〉/2 edges while 132

preferentially linking to high degree nodes. The model generates networks with a 133

scale-free degree distribution pk ∼ k−γ [7, 38], where γ is the power-law exponent. 134

Finally, we consider the Watts-Strogatz small-world model [4], where a fraction of edges 135

of a regular ring lattice is randomly rewired. The model generates networks with a high 136

clustering coefficient 〈C〉 � 0 and a short average distance between the nodes 137

〈d〉 ' log〈k〉 n. 138

Network comparison 139

We adopt two recently proposed measures for comparing networks or graphs. These are 140

the simplified D-measure [39] and the portrait divergence [40,41]. Both are principled 141

information-theoretic measures that can be used to compare arbitrary graphs and do 142

not require that the two graphs being compared are defined on the same set of nodes. 143

Both measures compare graphs by quantifying differences among the distances between 144

the nodes of the graphs as defined below. 145

Let dij(G) denote the distance between nodes i and j in an undirected graph G and 146

dmax(G) the maximal distance or diameter, dmax(G) = maxi<j dij(G). Next, let 147

Did(G) be the fraction of nodes at distance d from node i, d = 0, . . . , dmax(G), 148

Did(G) =
1

n

n∑
j=1

I(dij(G) = d),

where I is the indicator function. Finally, let D(G) be the average of vectors Di(G) 149
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over all nodes in G, therefore 150

Dd(G) =
1

n

n∑
i=1

Did(G).

The simplified D-measure [39] measuring the dissimilarity between graphs G and G′ is 151

then defined as 152

D(G,G′) =
1

2

√
J (D(G),D(G′))

log 2
+

1

2

∣∣∣√N (G)−
√
N (G′)

∣∣∣ , (1)

where N (G) is the so-called node dispersion of graph G, 153

N (G) =
J (D1(G), . . . , Dn(G))

log(dmax(G) + 1)
,

and J is the Jensen-Shannon divergence. 154

The first term of Eq (1) compares graphs through averaged distances between the 155

nodes and thus captures global differences between the graphs. The second term further 156

compares graphs through the heterogeneity of the nodes and how each particular node 157

is connected throughout the graph. It thus captures local differences between the graphs. 158

It was empirically shown that the measure returns non-zero values only for 159

non-isomorphic graphs [39]. 160

In the case of the complete D-measure, Eq (1) also includes the third term 161

measuring the dissimilarity between node centralities in graphs G and G′, and their 162

complements. Since the latter are computationally prohibitive for sparse graphs, and 163

only strictly necessary to distinguish highly regular graphs, we here avoid the additional 164

term without significant precision loss [39]. 165

Furthermore, let Pkd(G) be the number of nodes that have k nodes at distance d, 166

d = 0, . . . , dmax(G), 167

Pkd(G) =

n∑
i=1

I(nDid(G) = k),

while other details are the same as before. P (G) is called the portrait of graph G, which 168

is invariant under graph isomorphism [41]. The portrait divergence [40] measuring the 169

distance between graphs G and G′ is then defined as 170

P (G,G′) = J (P(G),P(G′)), (2)

where J is the Jensen-Shannon divergence and 171

Pkd(G) =
1

n
Pkd(G)

1∑
c n

2
c

n∑
k′=0

k′Pk′d(G). (3)

Here, nc is the number of nodes in the connected component c and the sum in the 172

denominator goes through all connected components of G. The right part of Eq (3) 173

equals the probability that two randomly chosen nodes are at distance d, while the left 174

part further demands that one of these two nodes has exactly k nodes at distance d. 175

The portrait divergence in Eq (2) has a number of desirable properties for comparing 176

graphs thoroughly described in [40]. 177
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Fig 3. Distributions of war pact networks. Node degree distributions pk, the
average node clustering coefficient C(k) and node distance distributions pd for d > 2 of
particular realizations of the war pact model networks with n = 10 000 nodes and the
average degree 〈k〉 = 10 [42]. The models are initialized either with a perfect matching
(top), corresponding Erdős-Rényi random graphs (middle) or a randomly grown tree
graphs (bottom). The power-law node degree distributions pk ∼ k−γ are estimated using
the maximum likelihood approach [43].

Results and discussion 178

This section presents an empirical validation of the war pact model. First, we 179

characterize the statistical properties of the networks generated by different variants of 180

the model. Next, we study the model evolution by analyzing networks with growing 181

number of nodes or edges. Finally, we compare the war pact model against classical 182

random graph models and clarify the intuition behind the model for various real 183

networks. 184

War pact networks 185

Fig 3 shows distributions of various node statistics of particular realizations of the war 186

pact model networks. We consider four variants of the node selection rule introduced in 187

the Materials and methods section and three different choices of model initialization. 188

The top row in Fig 3 shows the distributions for networks initialized with a perfect 189

matching of nodes as in Algorithm 1, the networks in the middle row are initialized with 190

Erdős-Rényi random graphs [22] with the same number of nodes and edges, while the 191

networks in the bottom row are initialized with randomly grown tree graphs. 192
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Notice that the distributions in the top, middle and bottom rows are almost 193

indistinguishable. Hence, the particular choice of the model initialization has no 194

apparent effect on the structure of the generated networks. In the remainder, we 195

therefore always initialize the model with a perfect matching of nodes. 196

In contrast, the choice of the node selection rule does indeed shape the structure of 197

the generated networks as already observed in Fig 2. For instance, consider the node 198

degree distributions pk shown in the first column in Fig 3. When both nodes to be 199

merged are selected preferentially according to their degree k (KK model), the degree 200

distribution pk seems to follow a power-law for low degrees k . 10, whereas high degree 201

nodes k & 1 000 form a rich club [44]. Actually, the subgraph induced by the nodes with 202

degree k ≥ 1 000 is a clique. Next, when selecting the second node uniformly at random 203

(KR model), the degree distribution has a shape close to the power-law pk ∼ k−γ with 204

γ ≈ 1.6 throughout the entire range of node degrees. The war pact model can therefore 205

generate scale-free networks as is commonly observed in social and information 206

domains [45,46]. Finally, the other two node selection rules (KI and RR models) 207

generate networks with a peak in the degree distribution characteristic of technological 208

networks and random graphs. Hence, depending on the particular real network being 209

modeled, different node selection rules prove appropriate. 210

The middle column in Fig 3 shows the distributions of the average node clustering 211

coefficient C(k) for nodes with degree k. These largely resemble the node degree 212

distributions pk. In the case of the KR model networks with a seemingly power-law 213

degree distribution pk ∼ k−γ , C(k) distributions also seem to follow a power-law [47]. 214

More importantly, in all cases considered, the war pact model generates networks with a 215

non-trivial node clustering coefficient 〈C〉 � 0 characteristic of small-world networks [4]. 216

The small-world networks are further characterized by short distances between the 217

nodes [4]. The last column in Fig 3 shows the distributions of node distances pd for 218

d > 2. Most pairs of nodes are at distance d = 4 or 5 regardless of the particular variant 219

of the model. Thus, in summary, the war pact model generates networks with a 220

scale-free and small-world structure as commonly observed in practice. 221

Fig 4 shows different properties of the war pact model networks with a growing 222

number of nodes or edges. These are the fractions of nodes in the largest connected 223

component LCC, the average node clustering coefficient 〈C〉 and the node degree 224

mixing coefficients r. As predicted by the percolation theory for random graphs [48], a 225

large connected component LCC ≈ 100% emerges when the average node degree 〈k〉 226

exceeds a certain threshold, which depends on the particular variant of the model (top 227

left plot in Fig 4). Nevertheless, when the average node degree equals 〈k〉 ≈ 10, the 228

largest connected component includes LCC > 90% of the nodes regardless of the model 229

considered. Notice that this is independent of the number of nodes n (bottom left plot 230

in Fig 4). 231

As expected, the average node clustering coefficient 〈C〉 increases with the average 232

node degree 〈k〉 (top middle plot in Fig 4). Networks with the highest clustering 233

coefficient 〈C〉 are generated by the KR model with values similar to those observed in 234

real networks (see Table 1). In contrast, networks generated by the KK model show an 235

increasing clustering coefficient 〈C〉 only up to a certain point when the average node 236

degree equals 〈k〉 ≈ 5, after which 〈C〉 starts to decrease. The reason for this is that the 237

networks start forming a well-pronounced rich club of a few high-degree nodes with 238

C = 1, whereas most of the nodes are pendant nodes with C = 0. Finally, when fixing 239

the average node degree to 〈k〉 = 10 and increasing the number of nodes n, the 240

clustering coefficient 〈C〉 decreases for all variants of the war pact model since the 241

generated networks are becoming increasingly more sparse (bottom middle plot 242

in Fig 4). 243

The last column in Fig 4 shows the evolution of the node degree mixing coefficient r 244
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Fig 4. Evolution of war pact networks. The fractions of nodes in the largest
connected component LCC, the average node clustering coefficient 〈C〉 and the node
degree mixing coefficients r during the evolution of the war pact model networks with
n = 2 500 nodes and growing average degree 〈k〉 (top) or growing number of nodes n
and the average degree 〈k〉 = 10 (bottom). Therefore, the number of edges m is
increasing from left to right in all plots that show the averages over 25 independent
realizations of the models.

for the growing war pact model networks. Notice that the values of r are largely 245

independent of the number of nodes n and the average node degree 〈k〉. All variants of 246

the war pact model except maybe the KK model generate networks with no pronounced 247

degree mixing r ≈ 0. On the other hand, the KK model networks are very mildly degree 248

disassortative with r ≈ −0.05, due to the reasons already mentioned above. 249

Comparison and discussion 250

The previous subsection shows that the choice of the war pact model initialization does 251

not have any apparent effect on the generated networks. On the contrary, different node 252

selection rules do indeed generate networks with a different topological structure. Most 253

realistic networks matching the properties of connected scale-free and small-world 254

networks with a core-periphery structure [4, 7, 16] seem to be generated by the model 255

that selects the first node preferentially according to its current degree and the second 256

node uniformly at random (the KR model). This model is also theoretically the most 257

sound, since it incorporates the important realism of real networks known as preferential 258

attachment [7], where new nodes preferentially link to well-connected nodes. Here the 259

nodes are not added but merged, while the former are modeled by randomly selected 260

nodes and the latter are modeled by high-degree nodes. In the present subsection, we 261

also evaluate this hypothesis empirically using four real networks from diverse domains. 262

The first two plots in Fig 5 compare different variants of the war pact model with an 263

international trade network [32]. The plots show distributions of the simplified 264

D-measure pD in Eq (1) [39] and the portrait divergence pP in Eq (2) [40]. For both 265

measures, the KR model clearly provides the best fit to the real network. Almost any 266

network generated by the KR model reproduces the real network better than any 267

realization of any alternative model. This also applies to other real networks analysed in 268
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Fig 5. Comparison of network models. Comparison of the war pact model
networks and classical random graphs with the international trade network (top), and
correlates of the war network, the Bitcoin transactions network and the autonomous
systems graph (bottom). The plots show distributions of the simplified D-measure pD
and the portrait divergence pP estimated over 100 independent realizations of the
models.

the paper (exact results are omitted). In the remainder, we therefore compare other 269

random graph models only with the KR model. 270

The remaining four plots in Fig 5 compare networks generated by different random 271

graph models with the international trade network as above, and correlates of the war 272

network [33], the Bitcoin transactions network [34] and the autonomous systems 273

graph [35]. The plots show the distributions of the portrait divergence pP , while the 274

models include the war pact networks, Erdős-Rényi random graphs [22], 275

Barabási-Albert scale-free networks [7] and Watts-Strogatz small-world networks [4]. 276

The latter are without doubt the most fundamental and commonly analysed models in 277

network science literature. 278

All real networks considered, the war pact model reproduces the structure of the 279

networks better than any other model. Again, almost any network generated by the war 280

pact model fits the real network better than any realization of any alternative model. 281

We stress that all these models are either static or models with a growing number of 282

nodes and edges. In contrast, the war pact model networks shrink over time and 283

possibly provide a better explanation of the evolution of the considered real networks. 284

Table 2 further shows the standard statistics of the war pact model networks that 285

best reproduce real networks according to the portrait divergence. Comparing the 286

values with those in Table 1, these match the statistics of real networks well with a few 287

exceptions shown in bold in Table 2. In particular, the war pact model underestimates 288

the average node clustering coefficient 〈C〉 and overestimates the node degree mixing 289

coefficient r in correlates of war and Bitcoin transaction networks, and the autonomous 290

systems graph, while the model underestimates the modularity Q of the community 291

structure in international trade and Bitcoin transactions networks, and the autonomous 292

systems graph. On the other hand, the model almost precisely reproduces the fraction 293

of nodes in the largest connected component LCC, the average distance between the 294

nodes 〈d〉 and network diameter dmax. Overall, the war pact model replicates the 295

July 12, 2019 10/14



Table 2. Statistics of war pact networks. Standard statistics of the war pact model networks that best reproduce real
networks according to the portrait divergence estimated over 100 independent realizations of the model.

Network n m LCC 〈k〉 〈C〉 〈d〉 dmax r Q

Correlates of war 41 54 90.2% 2.63 0.06 2.64 7 −0.14 0.53
International trade 130 3 730 100.0% 57.38 0.53 2.17 5 −0.04 0.02
Bitcoin transactions 1 288 6 236 98.0% 9.68 0.13 3.08 7 −0.05 0.24
Autonomous systems 3 213 11 248 98.3% 7.00 0.03 3.62 9 0.00 0.33

structure of these real networks better than any other model considered. 296

Besides, the war pact model also provides an intuitive explanation of the evolution of 297

many real networks. For instance, the nodes in the correlates of war network represent 298

alliances between world nations and the edges represent different military or 299

non-military conflicts between them. When nations of two alliances form a pact, or 300

nations in one alliance occupy the nations of another, the enemies of both become 301

common enemies, which can be modeled by simply merging the corresponding nodes. 302

Furthermore, the node selection rule that proved most suitable above suggests that 303

larger alliances with larger number of enemies form a pact with or conquer other 304

alliances. This intuition has motivated the name war pact model. 305

The evolution of other real networks analysed in the paper can be explained in a 306

similar manner. The trading relations between countries or companies are shared after 307

an alliance between two countries or a merger of two companies. Next, when a single 308

user controls multiple Bitcoin addresses, these are likely to coappear in future 309

transactions. Finally, when two entities that have governed their Internet traffic 310

independently unite for whatever reason, their traffic is merged from an external point 311

of view. Indeed, one can come up with a similar intuitive explanation of the evolution of 312

other real networks not considered here. 313

As already mentioned before, the initialization of the war pact model with pairs of 314

connected nodes is somewhat artificial in the scenarios considered. However, as we show 315

in the empirical evaluation of the model, the particular choice of model initialization has 316

no apparent effect on the resulting structure of the generated networks. 317

Conclusion 318

In this paper, we propose a simple model of shrinking networks called the war pact 319

model. The model starts with some fixed number of edges forming a perfect matching, 320

and then iteratively merges the nodes until the desired number of nodes is obtained. In 321

contrast to most network models in literature that are either static, representing a 322

snapshot of a network [4, 22, 23], or generate networks with a growing number of nodes 323

and edges [7, 13,27], the war pact model networks shrink and thus represent a shift in 324

the perspective of the evolution of real networks that has been largely neglected in the 325

past [28,29]. 326

We show that networks generated by the war pact model match the common 327

properties of real networks. These include the emergence of a large connected 328

component [22], a scale-free node degree distribution [7], a small-world network 329

structure [4], a disassortative node degree mixing [14], a distinctive network mesoscopic 330

structure [16] and selected other properties. Even more importantly, the model provides 331

an intuitive explanation of the evolution of diverse real networks representing the 332

worldwide trade, international wars or non-military conflicts and other disputes, 333

cryptocurrency transactions, Internet traffic and likely many other networks not 334

considered here. In summary, compared to classical growing network models, network 335

July 12, 2019 11/14



shrinking possibly provides a more reasonable explanation of the evolution of at least 336

some real networks and greater emphasis should be put on such models in the future. 337

There are various directions for further research. Firstly, due to the algorithmic 338

simplicity of the war pact model, different network properties might be derived 339

analytically, thus rendering numerical simulations unnecessary. Secondly, the model 340

could be extended to other types of networks like weighted or valued and also signed 341

networks. Similarly, the node selection rule could be easily adjusted for multimode and 342

multiplex networks. Finally, a thorough comparison of different network models could 343

be conducted, possibly giving a more conclusive answer whether growing or shrinking 344

models, or some reasonable combination of them, explain the evolution of real networks 345

better. 346

Acknowledgments 347

The authors wish to thank Vladimir Batagelj for his helpful comments and suggestions 348

on an earlier version of the paper, and Teja Goli for proofreading the final paper. 349

Funding Statement 350

This study has been supported by the Slovenian Research Agency under the program 351

P5-0168 and by the European Union COST Action number CA15109. There was no 352

additional external funding received for this study. 353

References

1. Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks.
Phys Rev Lett. 2001;86(14):3200–3203.

2. Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in
complex networks. Phys Rev E. 2001;63(6):066117.

3. Milgram S. The small world problem. Psychol Today. 1967;1(1):60–67.

4. Watts DJ, Strogatz SH. Collective dynamics of ’small-world’ networks. Nature.
1998;393(6684):440–442.

5. Kleinberg JM. Navigation in a small world. Nature. 2000;406(6798):845.
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