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networks courses

University of Ljubljana
Faculty of Computer and
Information Science

elective courses on NETWORKS in 2017/18

Networks or graphs are ubiquitous in everyday life. Examples include online social networks, the Web, references between WikiLeaks cables, Supervizor, terrorist affiliations, LPP bus map,
plumbing systems and your brain. Many such real networks reveal characteristic patterns of connectedness that are far from regular or random. Networks have thus been a prominent tool
for i igating real Id since the 18th century. However, while small networks can be drawn by hand and analyzed by a naked eye, real networks require specialized computer

algorithms, techniques and models. This led to the emergence of a new scientific field about 20 years ago...
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talk outline

1. reliability of bibliographic databases

_iube/j, L., Fiala, D., & Bajec, M. (2014). Scientific Reports, 4, 6496.
Subelj, L., Bajec, M., Boshkoska, B. M., etal. (2015). PLoS ONE, 10(5), e0127390.

2. modeling paper citation networks

S:ube/j, L., & Bajec, M. (2013). In Proceedings of the LSNA ‘13, pp. 527-530.
Subelj, L., Zitnik, S., & Bajec, M. (2014). In Proceedings of the NetSci 14, p. 1.

3. clustering paper citation networks
Subelj, L., Van Eck, N. J., & Waltman, L. (2016).PLoS ONE, 11(4), e0154404.



bibliographic databases reliability

e databases basis for research & evaluation

e databases can differ substantially
different databases often give quite different conclusions

e content & structure can differ substantially
coverage, timespan, features, accuracy, acquisition etc.

* only informal notions on their reliability
particular case of reliability of structure of citation networks



structure of citation networks

e statistics of citation networks

* mostly consistent with outliers
outliers due to data acquisition in most cases

* comparison over one statistic

* comparison over many statistics?
same problem in machine learning community
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methodology of database comparison

* network statistics — residuals — database rank
* mean ranks of databases over many statistics

* residuals since “true database” is not known
database reliability seen as consistency with other databases

Pairwise Spearman correlations p; ; Residuals mean ranks R;

3pij « Hi | Two-tailed Fisher independence z-tests
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One-tailed Friedman rank test Hg
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comparison of citation networks

e comparison of different citation networks
results robust to selection of networks, statistics, patterns etc.
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comparison of bibliographic networks

* A paper citation networks information networks
* C author collaboration networks social networks
* B author citation networks social-information networks
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models of citation networks

* generative models of citation networks
to reason about structure, evolution, dynamics, future etc.

* many possible applications in bibliometrics




forest fire network model

* each new node i forms links as follows
1. iselectsinitialambassadora and links to a
2. iselects its neighborsy, zand linksto y, z
3. y,zare taken as new ambassadors of i




forest fire citation model

e each new paper i cites as follows
1. iselects initial paper a and cites a
2. iselects itsreferencesy, z and cites y, z
3. y, z are taken as new reading for i

* then authors read all cited papers andvice-versa
* only =20% references read (simkin & Roychowdhury, 2003)



realistic citation model

e each new paper i cites as follows
1. iselects initial paper a and can cite a
2. iselects its referencesy, z and cancitey, z
3. some references are taken as new reading for i

* read & cited papers modeled independently



directed citation model
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implications of citation model
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Data # Cite % Copy # Read % Cite % Citation % Service % Other

ILS 3.98 86.1% 2.14 27.9% 29.2% 41.0% 29.8%

T™ 2.93 79.7% 1.47 45.2% 74.7% 0.5% 24.9%
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clustering citation networks

* clustering papers based

on direct citation relations
research areas or topics of papers

* systematic comparison of

large number of methods
network clusteringand partitioning

there is no
“best” method!

Bibliometric networks I

Citation analysis: Advanced indicators & Journal impact factor I

Citation analysis: Foundations [Jj
Citation analysis: h-index + Bibliographic databases I

Citation distributions and citation dynamics [l

Collaboration I

Country-specific case studies .
Gender differences [l
Interdisciplinarity 1l

Patents + Nanotechnology I

Peer review |l
Social sciences and humanities l

University rankings [l

Webometrics I

Remaining publications l



thank you!

network convexity

LCN2 seminar next Fridayat4pm in Snellius



