network analysis in bibliometrics

Lovro Šubelj

University of Ljubljana, Faculty of Computer and Information Science

CWTS '17

University of Ljubljana

- since 1919 271st in CWTS Leiden Ranking 2017
- 26 members 23 faculties & 3 academies
- 40,110 students & 5,730 staff in 2016

Faculty of Computer and Information Science

- since 1996 cs study since 1973
- ≈1,300 students & ≈180 staff
- BSc, MSc, PhD cs, prog, math, mm
- research cs, db, is, dm, ml, ai, nets

networks courses

talk outline

1. reliability of bibliographic databases

Šubelj, L., Fiala, D., & Bajec, M. (2014). Scientific Reports, 4, 6496. Šubelj, L., Bajec, M., Boshkoska, B. M., et al. (2015). PLoS ONE, 10(5), e0127390.

2. modeling paper citation networks

Šubelj, L., & Bajec, M. (2013). In Proceedings of the LSNA '13, pp. 527–530. Šubelj, L., Žitnik, S., & Bajec, M. (2014). In Proceedings of the NetSci '14, p. 1.

3. clustering paper citation networks

Šubelj, L., Van Eck, N. J., & Waltman, L. (2016).PLoS ONE, 11(4), e0154404.

bibliographic databases reliability

- databases basis for research & evaluation
- databases can **differ substantially** *different databases often give quite different conclusions*
- content & **structure** can differ substantially *coverage, timespan, features, accuracy, acquisition etc.*
- only informal notions on their **reliability** *particular case of reliability of structure of citation networks*

structure of citation networks

- statistics of citation networks
- mostly consistent with outliers outliers due to data acquisition in most cases
- comparison over one statistic
- comparison over many statistics? same problem in machine learning community

methodology of database comparison

- network statistics residuals database rank
- mean ranks of databases over many statistics
- residuals since "true database" is not known

database reliability seen as consistency with other databases

comparison of citation networks

comparison of different citation networks

results robust to selection of networks, statistics, patterns etc.

comparison of different information networks

comparison of **bibliographic networks**

- A paper citation networks information networks
- C author collaboration networks social networks
- B author citation networks social-information networks

talk outline

1. reliability of bibliographic databases

Šubelj, L., Fiala, D., & Bajec, M. (2014). Scientific Reports, 4, 6496. Šubelj, L., Bajec, M., Boshkoska, B. M., et al. (2015). PLoS ONE, 10(5), e0127390.

2. modeling paper citation networks

Šubelj, L., & Bajec, M. (2013). In Proceedings of the LSNA '13, pp. 527–530. Šubelj, L., Žitnik, S., & Bajec, M. (2014). In Proceedings of the NetSci '14, p. 1.

3. clustering paper citation networks

Šubelj, L., Van Eck, N. J., & Waltman, L. (2016).PLoS ONE, 11(4), e0154404.

models of citation networks

- generative models of citation networks to reason about structure, evolution, dynamics, future etc.
- many possible **applications** in bibliometrics

forest fire network model

• each new node *i* forms links as follows

- 1. *i* selects initial **ambassador** *a* and **links to** *a*
- 2. *i* selects its **neighbors** *y*, *z* and **links to** *y*, *z*
- 3. y, z are taken as **new ambassadors** of i

forest fire citation model

- each new **paper** *i* **cites** as follows
 - 1. *i* selects initial **paper** *a* and **cites** *a*
 - 2. *i* selects its **references** *y*, *z* and **cites** *y*, *z*
 - 3. y, z are taken as **new reading** for i

- then authors read all cited papers and vice-versa
- only ≈20% references read (Simkin & Roychowdhury, 2003)

realistic citation model

• each new paper *i* cites as follows

- 1. *i* selects initial **paper** *a* and **can cite** *a*
- 2. *i* selects its **references** *y*, *z* and **can cite** *y*, *z*
- 3. some **references** are taken as **new reading** for *i*

read & cited papers modeled independently

directed citation model

- directed dynamics much more complicated
- model reproduces WoS citation networks
- clear optima (peak) in model parameters

implications of citation model

talk outline

1. reliability of bibliographic databases

Šubelj, L., Fiala, D., & Bajec, M. (2014). Scientific Reports, 4, 6496. Šubelj, L., Bajec, M., Boshkoska, B. M., et al. (2015). PLoS ONE, 10(5), e0127390.

2. modeling paper citation networks

Šubelj, L., & Bajec, M. (2013). In Proceedings of the LSNA '13, pp. 527–530. Šubelj, L., Žitnik, S., & Bajec, M. (2014). In Proceedings of the NetSci '14, p. 1.

3. clustering paper citation networks

Šubelj, L., Van Eck, N. J., & Waltman, L. (2016).PLoS ONE, 11(4), e0154404.

clustering citation networks

- clustering papers based on direct citation relations research areas or topics of papers
- systematic comparison of large number of methods network clustering and partitioning

there is **no "best"** method!

thank you!

network convexity

LCN2 seminar next Friday at 4pm in Snellius