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study	motivation

• bibliographic	databases basis	for	scientific	research
• main	source	of	its	evaluation (citations,	h-index)
• often	studied	in	biblio/scientometrics literature
• different	databases	give	different	conclusions	(P(k))

• databases	differ	substantially between	each	other
• which	bibliographic	database	is	most	reliable?



bibliographic	databases

• scientific	bibliographic	databases
• hand-curated solutions	—Web	of	Science,	Scopus
• automatic services	— Google	Scholar,	CiteSeer
• preprint repositories— arXiv,	socArXiv,	bioRxiv
• field-specific libraries — PubMed,	DBLP,	APS
• national information	systems	— SICRIS
• and	many	other



comparisons	of	databases

• amount of	literature	covered	— WoS ≈	Scopus
• timespan of	literature	covered	— WoS >	Scopus
• available	features and	use	in	scientific	workflow
• data	acquisition and	maintenancemethodology

• content	and	structure	differ	substantially
• only	informal	notions	on	reliability



reliability	of	databases

• content— (amount	of)	literature	covered
• structure— accuracy	of	citation	information
• networks of	citations	between	scientific	papers
• comparison of	structure	of	citation	networks



structure	of	citation	networks

• local/global	statistics of	citation	networks
• networks	mostly consistentwith	few	outliers
• outliers	due	to	data	acquisition in	most	cases



comparison	of	citation	networks

• one	can	reason	only	about	individual	statistics
• comparison	over	multiple	statisticsproblematic

• similar	problem	in	machine	learning	community	
• comparison	of	algorithms	over	multiple	data	sets
• compare	mean	ranks	of	algorithms	over	data	sets
• Friedman	rank	test	with	Nemenyi post-hoc	test



methodology	of	comparison

• statistics	residuals	since	“true	network”	not	known
• database	reliability seen	as	consistencywith	rest
• statistics	— residuals	— independence	— ranks
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comparison	of	citation	networks

• statistics— residuals	— independence	— ranks
• most	statistics	derived	from	node	distributions
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comparison	of	citation	networks

• mean	ranks of	citation	networks	over	statistics
• connected	networks	are	not	significantly	different
• hand-curated	WoS >	field-specific	DBLP



comparison	with	other	networks

• comparison	robust to	selection	of	networks	

• comparison	with	social	networksmeaningless
• comparison	with	other	information	networks
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other	bibliometric	networks

• A	paper	citation information	networks
• C	author	collaboration social	networks
• B	author	citation social-information	networks	
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robustness	of	comparison

• results	robust to	selection	of	statistics	— subgraphs

• results	comparable	with	other	techniques—MDS
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conclusions	of	comparison

• notable	differences between	databases
• there	is	no	“best” bibliographic	database
• most	appropriate	depends	on	type	of	analysis
• hand-curated databases	perform	well	overall
• field-specific databases	perform	poorly
• recipes for	future scientometrics studies

• methodology	applicable	to	any	network	data



identification	of	research	areas

• scientific	journals	classified	in	disciplines,	fields
• research	areas of	scientific	papers	unknown

• clustering	papers based	on	direct	citation	relations
• graph	partitioning/community	detection	methods
• goal	are	clusters	of	topically	related	papers
• clusters	recognizable,	comprehensible,	robust



methods	for	clustering



classes	of	clustering	methods

• distances between	clusterings of	methods
• smaller	number	of	representative	methods



statistical	comparison

• size	distributions,	degeneracy	diagrams etc.
• network	analysis	and	bibliometric	metrics



expert	assessment	tool

• hands-on assessment for	scientometrics field
• CitNetExplorer for	analyzing	citation	networks



hands-on	expert	assessment

• low resolution	— one	cluster	for	scientometrics
• high resolution	— four	clusters	for	h-index	papers
• topic resolution	— limited	number	of	methods



conclusions	of	identification

• methods	return	substantially	different clusterings
• no	method performs	satisfactoryby	all	criteria
• simple	post-processing performs	poorly

• map	equation	methods	provide	good	trade-off
• entire	science	can	be	clustered	in	about	one	hour
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