reliability of **bibliographic databases** for scientometrics network analysis

Lovro Šubelj

University of Ljubljana, Faculty of Computer and Information Science

ITIS '16

acknowledgements

Lovro Šubelj, **Dalibor Fiala** & **Marko Bajec** *Scientific Reports* 4, 6496 (2014)

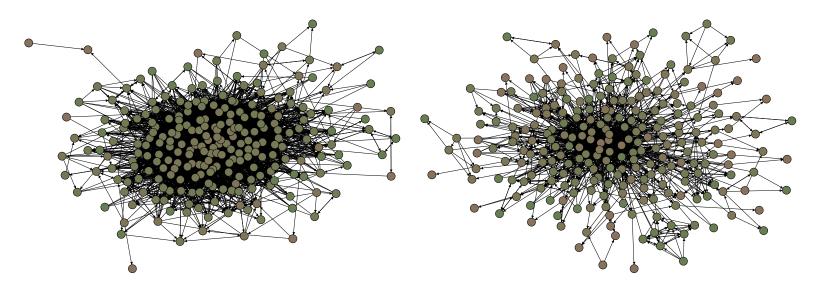
Lovro Šubelj, Marko Bajec, **Biljana M. Boshkoska**, **Andrej Kastrin & Zoran Levnajić** *PLoS ONE* 10(5), e0127390 (2015)

Lovro Šubelj, **Nees Jan van Eck**, **Ludo Waltman** *PLoS ONE* 11(4), e0154404 (2016)

study motivation

- **bibliographic databases** basis for scientific research
- main source of its **evaluation** (citations, *h*-index)
- often studied in **biblio/scientometrics** literature
- different databases give different conclusions (P(k))
- databases differ substantially between each other
- which bibliographic database is **most reliable**?

bibliographic databases

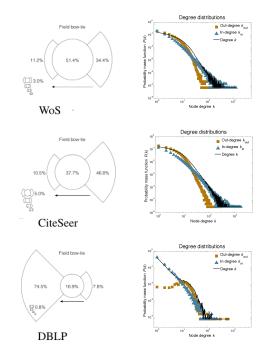

- scientific bibliographic databases
- hand-curated solutions Web of Science, Scopus
- automatic services Google Scholar, CiteSeer
- **preprint** repositories arXiv, socArXiv, bioRxiv
- field-specific libraries PubMed, DBLP, APS
- **national** information systems SICRIS
- and many other

comparisons of databases

- **amount** of literature covered WoS ≈ Scopus
- **timespan** of literature covered WoS > Scopus
- available **features** and use in scientific workflow
- data acquisition and maintenance methodology
- content and structure differ substantially
- only informal notions on **reliability**

reliability of databases

- **content** (amount of) literature covered
- **structure** accuracy of citation information
- **networks** of **citations** between scientific papers
- comparison of structure of citation networks

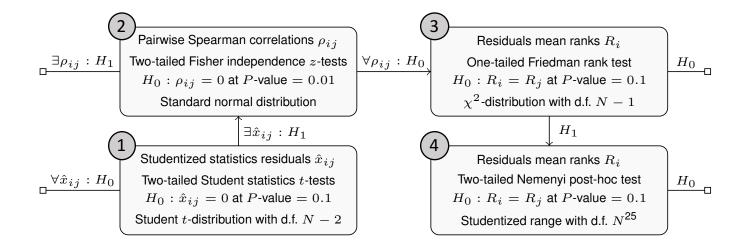

structure of citation networks

- local/global statistics of citation networks
- networks mostly consistent with few outliers
- outliers due to data acquisition in most cases

Source		Descriptive statistics		Field decomposition			
	# Nodes	# Links	% WCC	% In-field	% Core	% Out-field	
WoS	140,362	639,110	97.0%	11.2%	51.4%	34.4%	
CiteSeer	384,413	1,744,619	95.0%	10.5%	37.7%	46.8%	
Cora	23,166	91,500	100.0%	8.5%	51.4%	40.1%	
HistCite	4,324	41,595	98.7%	44.8%	52.2%	1.6%	
DBLP	12,591	49,744	99.2%	74.5%	16.9%	7.8%	
arXiv	34,546	421,534	99.6%	6.7%	74.7%	18.1%	
Gnutella	62,586	147,892	100.0%	73.8%	25.7%	0.5%	
Twitter	81,306	1,768,135	100.0%	13.8%	86.2%	0.0%	

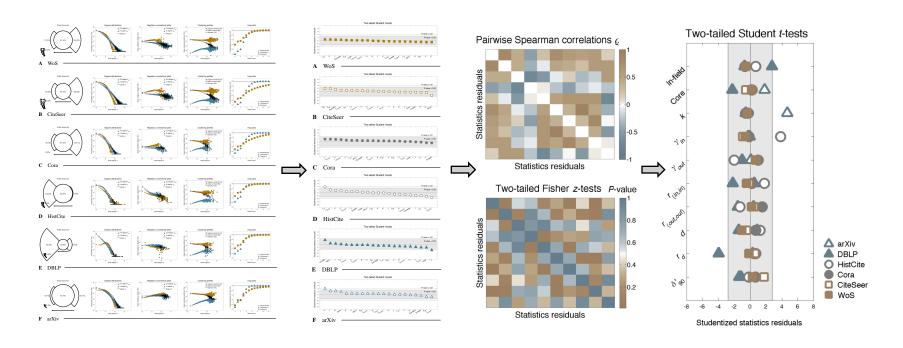
	Degree distributions				Degree mixing				
Source	<k></k>	γ	Yin	Yout	r	r (in, in)	r(in,out)	r _(out,in)	r _(out,out)
WoS	9.11	2.74	2.39	3.88	-0.06	0.04	-0.02	-0.03	0.09
CiteSeer	9.08	2.65	2.28	3.82	-0.06	0.05	0.00	0.00	0.12
Cora	7.90	2.88	2.60	4.00	-0.06	0.07	0.02	0.00	0.17
HistCite	9.99	2.55	3.50	2.37	-0.10	0.11	0.01	-0.13	0.00
DBLP	7.90	2.42	2.64	2.75	-0.05	0.00	-0.02	-0.05	-0.02
arXiv	24.40	2.67	2.54	3.45	-0.01	0.08	-0.04	0.00	0.11
Gnutella	4.73	6.37	7.59	4.78	-0.09	0.03	0.01	-0.01	0.00
Twitter	43.49	2.05	2.31	2.37	-0.03	0.00	0.06	-0.02	0.06

		Clustering distributions			Clustering mixing			Diameter statistics		
Source	$\langle c \rangle$		(d)	rc	rь	r _d	δ_{90}	δ'_{90}		
WoS	0.14	0.08 · 10 ⁻²	0.16	0.16	0.43	0.36	8.85 ± 0.01	7.79 ± 0.03		
CiteSeer	0.18	$0.07 \cdot 10^{-2}$	0.21	0.14	0.44	0.40	28.57 ± 0.23	9.01 ± 0.04		
Cora	0.27	0.46 · 10 ⁻²	0.32	0.17	0.50	0.40	21.12 ± 0.16	8.17 ± 0.03		
HistCite	0.31	$0.20 \cdot 10^{-2}$	0.36	0.05	0.36	0.41	7.97 ± 0.03	7.22 ± 0.04		
DBLP	0.12	0.14 · 10 ⁻²	0.14	0.10	0.35	0.26	9.13 ± 0.07	6.24 ± 0.02		
arXiv	0.28	$0.64 \cdot 10^{-2}$	0.33	0.13	0.46	0.39	21.71 ± 0.12	6.04 ± 0.02		
Gnutella	0.01	0.03 · 10 ⁻²	0.01	0.09	0.25	0.17	12.83 ± 0.11	7.70 ± 0.01		
Twitter	0.57	0.35 · 10-2	0.63	0.09	0.54	0.40	$\textbf{6.90} \pm \textbf{0.02}$	5.50 ± 0.01		

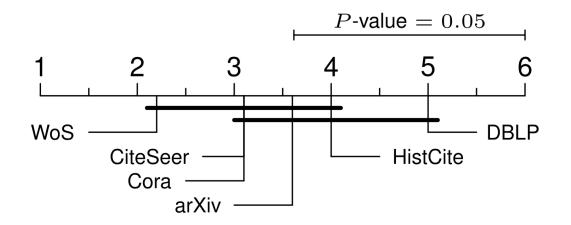


comparison of citation networks

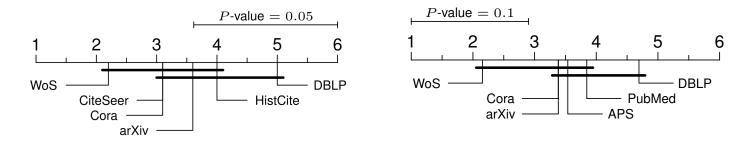
- one can reason only about individual statistics
- comparison over **multiple statistics** problematic
- similar problem in machine learning community
- comparison of algorithms over multiple data sets
- compare **mean ranks** of algorithms over data sets
- Friedman rank test with Nemenyi post-hoc test


methodology of comparison

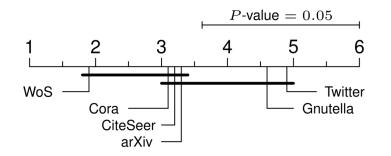
- statistics residuals since "true network" not known
- database reliability seen as consistency with rest
- statistics residuals independence ranks


comparison of citation networks

- statistics residuals independence ranks
- most statistics derived from node distributions

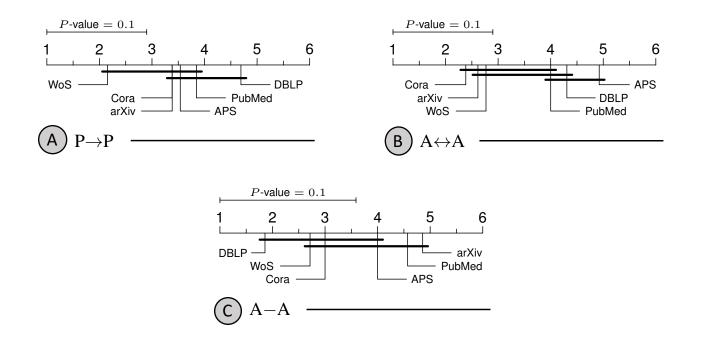

comparison of citation networks

- mean ranks of citation networks over statistics
- connected networks are not significantly different
- hand-curated WoS > field-specific DBLP

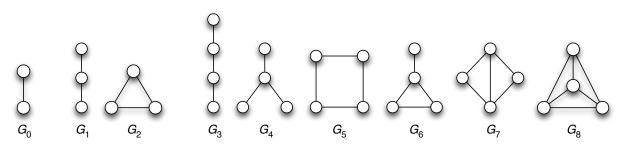


comparison with other networks

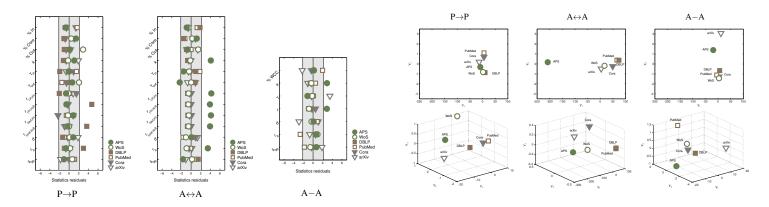
comparison robust to selection of networks



- comparison with **social networks** meaningless
- comparison with other information networks


other bibliometric networks

- A paper citation information networks
- C author collaboration social networks
- **B author citation** social-information networks



robustness of comparison

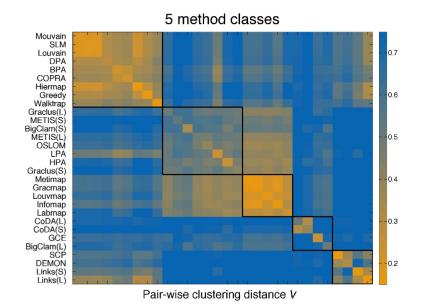
results robust to selection of statistics — subgraphs

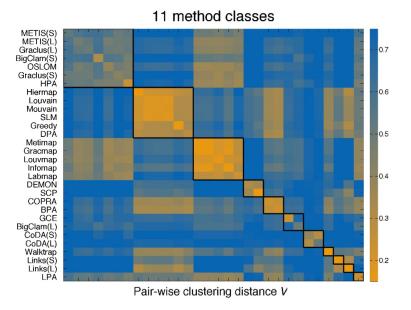
results comparable with other techniques — MDS

conclusions of comparison

- notable **differences** between databases
- there is **no "best"** bibliographic database
- most appropriate depends on type of analysis
- hand-curated databases perform well overall
- field-specific databases perform poorly
- recipes for future scientometrics studies
- methodology applicable to any network data

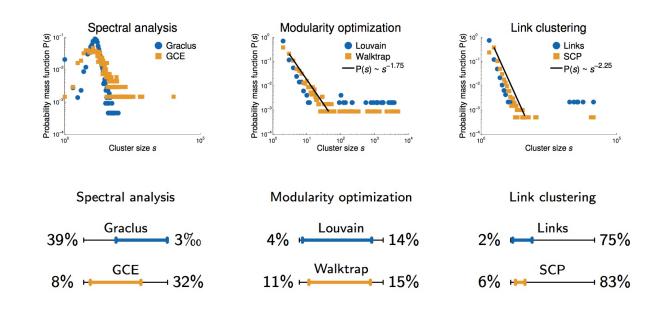
identification of research areas

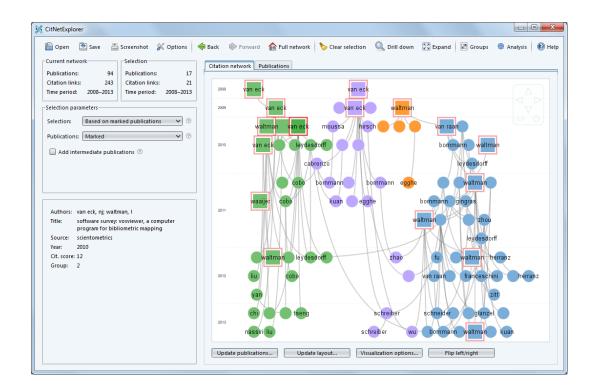

- scientific journals classified in **disciplines**, fields
- research areas of scientific papers unknown
- clustering papers based on direct citation relations
- graph partitioning/community detection methods
- goal are clusters of topically related papers
- clusters recognizable, comprehensible, robust


methods for clustering

class	method	description
Spectral analysis	Graclus(S L)	k-means clustering iteration
	METIS(S L)	multi-level k-way partitioning
Map equation	Infomap	information flows compression
	Hiermap	hierarchical flows compression
Modularity optimization	Louvain	greedy hierarchical optimization
	Mouvain	multi-level hierarchical optimization
	SLM	smart local moving optimization
Statistical methods	OSLOM	order statistics local optimization method
Label propagation	LPA	label propagation algorithm
	BPA	balanced propagation algorithm
	DPA	diffusion-propagation algorithm
	HPA	hierarchical propagation algorithm
	COPRA	community overlap propagation algorithm
Random walks	Walktrap	random walks hierarchical clustering
Link clustering	Links(S L)	link similarity hierarchical clustering
Graph models	BigClam(S L)	cluster affiliation matrix factorization
	CoDA(S L)	communities through directed affiliations
Ego-networks	DEMON	democratic estimate of modular organization
Cliques	SCP	sequential clique percolation
	GCE	greedy clique expansion
2-step methods	Metilus	METIS+Graclus
	Gracmap	Graclus+Infomap
	Metimap	METIS+Infomap
	Louvmap	Louvain+Infomap
	Labmap	LPA+Infomap

classes of clustering methods

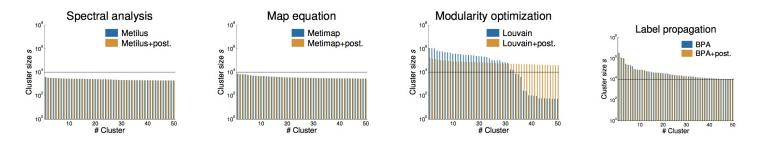

- distances between clusterings of methods
- smaller number of representative methods


statistical comparison

- size distributions, degeneracy diagrams etc.
- network analysis and bibliometric metrics

expert assessment tool

- hands-on assessment for scientometrics field
- **CitNetExplorer** for analyzing citation networks


hands-on expert assessment

- **low** resolution one cluster for **scientometrics**
- high resolution four clusters for *h*-index papers
- **topic** resolution limited number of methods

Bibliographic databases	Bibliometric networks
Bibliometric networks (1) + Interdisciplinarity	
Bibliometric networks (2)	Citation analysis: Advanced indicators & Journal impact factor
Citation analysis: Advanced indicators	Citation analysis: Foundations
Citation analysis: Foundations	
Citation analysis: Journal impact factor	Citation analysis: h-index + Bibliographic databases
Citation analysis: h-index	Citation distributions and citation dynamics
Citation distributions and citation dynamics	
Collaboration	Collaboration
	Country-specific case studies
Patents + Nanotechnology	Gender differences
Peer review	Interdisciplinarity
Social sciences and humanities	Patents + Nanotechnology
Webometrics	Peer review
	Social sciences and humanities
	University rankings
Remaining publications	Webometrics
	Remaining publications

conclusions of identification

- methods return substantially different clusterings
- no method performs satisfactory by all criteria
- simple **post-processing** performs **poorly**

- map equation methods provide good trade-off
- entire science can be clustered in about one hour

references

Lovro Šubelj, Dalibor Fiala & Marko Bajec Scientific Reports 4, 6496 (2014)

Lovro Šubelj, Marko Bajec, Biljana M. Boshkoska, Andrej Kastrin & Zoran Levnajić *PLoS ONE* 10(5), e0127390 (2015)

Lovro Šubelj, Nees Jan van Eck, Ludo Waltman *PLoS ONE* 11(4), e0154404 (2016)