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Motivation

Motivation

o Community structure is regarded as an intrinsic property of complex
real-world—social and information—networks.

o Intuitively, communities correspond to groups of nodes densely connected
within, and loosely connected between.

o They provide an insight into not only structural organization but also
functional behavior of various real-world systems.

Still, the majority of past work was limited to cohesive modules of
nodes—link-density communities. Recent work suggests more general
structures may exist in real-world networks—link-pattern communities.
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Classical community detection
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Classical community detection Label propagation algorithm

Label propagation algorithm

Undirected graph G(N, L) with weights W and communities C.

Label propagation algorithm (LPA) [Raghavan et al., 2007]:
@ initialize nodes with unique labels:

Vne N:c,=I,,
@ set node’s label to the label shared by most of its neighbors:
Vne N :c,= argmlax Z Wnm,

meTh
@ repeat step 2. until convergence.
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Algorithm has near linear time complexity O(|L|) = O(k|N]|).
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Classical community detection Balanced propagation algorithm

Balanced propagation algorithm

Oscillation of labels in, e.g., two-mode networks.
— Labels are updated in a random order [Raghavan et al., 2007].
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The above severely hampers the robustness of the algorithm.
— Balanced propagation algorithm (BPA) [Subelj & Bajec, 2011c]:

Vne N:c,= argmlax Z bmWnm
meT,
where
1

= T e ntny (O bn=in).
in is a normalized position of node n € N in a random order, i, € (0, 1],

while X is fixed to % and p is set to 2.
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Classical community detection Defensive propagation

Defensive propagation
Algorithm is further improved through defensive prop. [Subelj & Bajec, 2011e]:

Vne N :c, = argmlax Z dmbmWnm
mer,

where d
dn= > kng; .

melr

Thus, higher and lower preferences are given to core and border nodes of
each current community, respectively (estimated using a random walker).
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Generalized community detection
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Generalized community detection General propagation algorithm

General propagation algorithm

Label propagation cannot be directly applied for detection of link-pattern
communities—prop. requires connected and cohesive modules of nodes.

Still, labels can be propagated through nodes’ neighbors.
< General propagation algorithm (GPA) [Subelj & Bajec, 2011d]:

VYne N : argm;‘ax o) Z bmdmWnm + (1 — 9;) Z bmg/mw,fm ,
merl!, meT\Tp|sel,

where §; € [0,1] is close to 1 and O for link-density and link-pattern
communities, respectively.
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Generalized community detection  General propagation algorithm

Community modeling
The core of GPA is in fact represented by community parameters &;!

In GPA the type of each community is estimated by means of
conductance @ [Bollobas, 1998]. Hence,

c ky
be=1-3(c) = Zne—Nkn
ZnGNC n
All §¢ are initially set to 3.
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Generalized community detection = Model-based propagation algorithm

Model-based propagation algorithm

Weakness of GPA—each community is treated independently of others.

In an ideal case, link-density and link-pattern communities would link to
other link-density and link-pattern communities, respectively.
< Model-based propagation algorithm (MPA):
1 O,
- |Ne| Z /Tn
meT' ;| neN¢

Initialization of §. is of vital importance!

Oc
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Generalized community detection Model-based propagation algorithm
Model-based propagation algorithm—initialization

For initialization, the hypothesis is refined: node’s neighbors should not
only reside in the same type of community, but in the same community.

Thus, d, could be initialized to clustering coefficient C, [Watts & Strogatz,
1998]. However, in many real-world networks C,, ~ k,,‘l.

Clustering coefficient ¢

0 10
Degree k Degree k

Hence, we initialize d, as:

§e, =

n

{1 for C, > ak,t + j,
p otherwise,

where «a, [ are estimated using ordinary least squares and p is fixed to ;.
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Generalized community detection Model-based propagation algorithm

Model-based propagation algorithm—pseudo-code

Algorithm (MPA)

Input: Graph G(N, L) and parameters \, u, p
Output: Communities C
{Initialization.}
while not converged do
shuffle( V)
for n € N do

by < 1/(1 + e~ #{in=A))

Cp < argmax; (6/ Zmel“{, bmdm + (1 — &) Zmer’s\rn\sern bmglm)

dn < Y mersr dm/ kS and dy < > mersr|ser, dm/ Y eer, K
end for

for c € C do
dc < 1/IN®| - mer,nene Ocm/ Kn
end for
end while
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Generalized community detection Model-based propagation algorithm

Model-based propagation algorithm—properties

Some properties of MPA:

o same algorithm for link-density and link-pattern communities,
no prior knowledge is required (e.g., number of communities),
algorithm uses only local information (straightforward parallelization),
relatively simple to extend (e.g., prior knowledge),
time complexity near O(k|L|) = O(k?|N|),

relatively simple to implement,
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Empirical evaluation Experimental testbed

Experimental testbed

Experimental testbed:
o classical, fully link-pattern and generalized community detection,
o synthetic, real-world and random networks,
o predictive data clustering (see paper).

Adopted algorithms:
MPA Model-based propagation algorithm
MPA(D) MPA with 6. =1 (only classical communities)

MPA(P) MPA with 5. = 0 (only link-pattern communities)
GPA General propagation algorithm [Subelj & Bajec, 2011d]
MM(EM) Mixture model with EM algorithm [Newman & Leicht, 2007]
MO(G) Greedy modularity optimization [Clauset et al., 2004]
Quality measures:
21(C, P) and NVOI — H(C|P) + H(P|C)

NMI = H(C) + H(P) log [N|
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Empirical evaluation Synthetic networks

Synthetic networks (1)

Classical community detection—Lancichinetti et al. benchmark:
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Empirical evaluation Synthetic networks

Synthetic networks (I1)

Gen. community detection—generalized Girvan-Newman benchmark:
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Empirical evaluation Synthetic networks

Synthetic networks (I11)

Generalized community detection—hierarchical networks:
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Empirical evaluation Real-world networks

Real-world networks (1)

Network IN| L] |C| MO(G) GPA  MM(EM)  MPA
Zachary's karate club 34 78 2 0.6925 0.7155 0.7870 0.8949
American college football 115 616 12 0.7547  0.8769 0.8049 0.8919
Davis's southern women 32 89 4 0.7338 0.8332 0.8084
Scottish corpor. interlocks 217 348 8 0.6634 0.5988 0.6411

Table: Analysis subject to NMI
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I SR R world networks

Real-world networks (II)

Network IN| L] |C] MO(G) GPA  MM(EM)  MPA
Java (org namespace) 709 3571 47 0.5029  0.5190 — 0.5187
0.7048  0.7369 - 0.7386

Java (javax namespace) 1595 5287 107

Table: Analysis subject to NMI

]l
o

28) javax communities (GPA)

26) javax adj. matrix ~ 27) javax blockmodel

(javax.swing, javax.management, javax.xml, javax.print, javax.naming, javax.lang ...)
Generalized network community detection NEMO '11 21 /25



- Conclusions & futurework
Outline

—

Motivation

N

Classical community detection
Label propagation algorithm
Balanced propagation algorithm
Defensive propagation

w

Generalized community detection
General propagation algorithm
Model-based propagation algorithm

4) Empirical evaluation
Synthetic networks
Real-world networks

(® Conclusions & future work



Conclusions & future work

Conclusions

Conclusions:
o algorithm for detection of arbitrary network modules,
o community modeling strategy based on network clustering,
o requires no prior knowledge about the true structure,

o comparable to current state-of-the-art.

Properties of real-world networks can be even further utilized within
the algorithm (i.e., community model)!
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Conclusions & future work

Future work

Open questions:
o Where and why do link-pattern communities emerge?

o How do different types of communities link between each other?

o How do link-pattern communities coincide with known properties of
real-world networks?

netsci

elegans

power

yeast! javax blogs oregon

Subelj & Bajec (University of Ljubljana)

Generalized network community detection

NEMO '11 24 /25



Thank you.
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