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Citation networks of scientific publications offer fundamental in-
sights into the structure and development of scientific knowledge.
We propose a new measure, called intermediacy, for tracing the his-
torical development of scientific knowledge. Given two publications,
an older and a more recent one, intermediacy identifies publications
that seem to play a major role in the historical development from
the older to the more recent publication. The identified publications
are important in connecting the older and the more recent publica-
tion in the citation network. After providing a formal definition of
intermediacy, we study its mathematical properties. We then present
two empirical case studies, one tracing historical developments at
the interface between the community detection and the scientomet-
ric literature and one examining the development of the literature on
peer review. We show both mathematically and empirically how in-
termediacy differs from main path analysis, which is the most popu-
lar approach for tracing historical developments in citation networks.
Main path analysis tends to favor longer paths over shorter ones,
whereas intermediacy has the opposite tendency. Compared to main
path analysis, we conclude that intermediacy offers a more princi-
pled approach for tracing the historical development of scientific
knowledge.

intermediacy | publication | citation network | main path analysis

C itation networks provide invaluable information for trac-
ing historical developments in science. The idea of tracing

scientific developments based on citation data goes back to
Eugene Garfield, the founder of the Science Citation Index.
In a report published more than 50 years ago, Garfield and
his co-workers concluded that citation analysis is “a valid and
valuable means of creating accurate historical descriptions of
scientific fields” (1). Garfield also developed a software tool
called HistCite that visualizes citation networks of scientific
publications. This tool supports users in tracing historical
developments in science, a process sometimes referred to as
algorithmic historiography by Garfield (2–4). More recently,
a software tool called CitNetExplorer (5) was developed that
has similar functionality but offers more flexibility in analyz-
ing large-scale citation networks. Other software tools, most
notably CiteSpace (6) and CRExplorer (7, 8), provide alterna-
tive approaches for tracing scientific developments based on
citation data.

Main path analysis, originally proposed by Hummon and
Doreian (9), is a widely used technique for tracing historical
developments in science. Given a citation network, main
path analysis identifies one or more paths in the network
that are considered to represent the most important scientific
developments. Many variants and extensions of main path
analysis have been proposed (10–16), not only for citation
networks of scientific publications but also for patent citation
networks (17–21).

In this paper, we introduce a new approach for tracing his-
torical developments in science based on citation networks. We

propose a measure called intermediacy. Given two publications
dealing with a specific research topic, an older publication
and a more recent one, intermediacy can be used to identify
publications that appear to play a major role in the historical
development from the older to the more recent publication.
These are publications that, based on citation links, are impor-
tant in connecting the older and the more recent publication.

Like main path analysis, intermediacy can be used to iden-
tify one or more citation paths between two publications.
However, as we will make clear, there are fundamental differ-
ences between intermediacy and main path analysis. Most
significantly, we will show that main path analysis tends to
favor longer citation paths over shorter ones, whereas interme-
diacy has the opposite tendency. For the purpose of tracing
historical developments in science, we argue that intermediacy
yields better results than main path analysis.

Intermediacy

Consider a directed acyclic graph G = (V ,E), where V denotes
the set of nodes of G and E denotes the set of edges of G.
The edges are directed. We are interested in the connectivity
between a source s ∈ V and a target t ∈ V . Only nodes that
are located on a path from source s to target t are of relevance.
We refer to such a path as a source-target path. We assume
that each node v ∈ V is located on a source-target path.

Definition 1. Given a source s and a target t, a path from s
to t is called a source-target path.

In this paper, our focus is on citation networks of scientific
publications. In this context, nodes are publications and
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Fig. 4. Results for case 1. (A) Probability of the ex-
istence of an active source-target path as a function
of the parameter p and (B) cumulative distribution of
intermediacy scores for different values of p. Spear-
man (C) and Pearson (D) correlations between in-
termediacy scores for different values of p, citation
counts, and reference counts. (E) Citation network of
the top ten most intermediate publications for p = 0.1.
(Only the name of the first author is shown.)

Science. We refer to Van Eck and Waltman (23) for a further
discussion of the problem of missing citation links.

In the Scopus database, we found n = 64 223 publications
that are located on a citation path between our source and
target publications. In total, we identifiedm = 280 033 citation
links between these publications. This means that on average
each publication has k = 2m/n ¥ 8.72 citation links, counting
both incoming and outgoing links.

Fig. 4A shows how the probability of the existence of an ac-
tive path between the source and target publications depends
on the parameter p. This probability increases from zero for
p = 0 to almost one starting from p = 0.25. The vertical line
indicates the value p = 1/k. At this value, traditional percola-
tion theory for random graphs suggests that the probability

that the source and target publications are connected becomes
non-negligible (24). When searching for a suitable value of
p, the value p = 1/k suggested by percolation theory may
serve as a reasonable starting point. In our case, this yields
p ¥ 1/8.72 ¥ 0.11, resulting in a probability of about 0.40 for
the existence of an active source-target path.

For five di�erent values of the parameter p, Fig. 4B shows
the cumulative distribution of the intermediacy scores of our
n = 64 223 publications. As is to be expected, when p is close
to zero, intermediacy scores are extremely small. On the other
hand, when p is getting close to one, intermediacy scores also
approach one.

Fig. 4C and Fig. 4D show Spearman and Pearson cor-
relations between the intermediacy scores obtained for five

Table 1. Top ten most intermediate publications in case 1 for p = 0.1.

p

0.1 0.3 0.5 0.7 0.9 cit. ref.

t Newman & Girvan (2004), Finding and evaluating community structure in networks, Phys.
Rev. E 69(2), 026113.

0.301 0.992 1.000 1.000 1.000 468 0

s Klavans & Boyack (2017), Which type of citation analysis generates the most accurate
taxonomy of scientific and technical knowledge?, J. Assoc. Inf. Sci. Tec. 68(4), 984-998.

0.301 0.992 1.000 1.000 1.000 0 24

1 Waltman & Van Eck (2013), A smart local moving algorithm for large-scale modularity-
based community detection, Eur. Phys. J. B 86, 471.

0.061 0.376 0.656 0.878 0.988 2 27

2 Waltman & Van Eck (2012), A new methodology for constructing a publication-level clas-
sification system of science, J. Assoc. Inf. Sci. Tec. 63(12), 2378-2392.

0.060 0.695 0.964 0.999 1.000 15 22

3 Hric et al. (2014), Community detection in networks: Structural communities versus
ground truth, Phys. Rev. E 90(6), 062805.

0.052 0.300 0.499 0.700 0.900 1 29

4 Fortunato (2010), Community detection in graphs, Phys. Rep. 486(3-5), 75-174. 0.037 0.629 0.972 1.000 1.000 73 154
5 Newman (2006), Modularity and community structure in networks, P. Natl. Acad. Sci. USA

103(23), 8577-8582.
0.035 0.736 0.979 1.000 1.000 221 8

6 Ruiz-Castillo & Waltman (2015), Field-normalized citation impact indicators using algo-
rithmically constructed classification systems of science, J. Informetr. 9(1), 102-117.

0.024 0.360 0.624 0.847 0.981 2 24

7 Blondel et al. (2008), Fast unfolding of communities in large networks, J. Stat. Mech.,
P10008.

0.022 0.836 0.998 1.000 1.000 78 21

8 Newman (2006), Finding community structure in networks using the eigenvectors of ma-
trices, Phys. Rev. E 74(3), 036104.

0.021 0.851 0.999 1.000 1.000 138 18

9 Newman (2004), Fast algorithm for detecting community structure in networks, Phys. Rev.
E 69(6), 066133.

0.020 0.296 0.501 0.700 0.900 246 1

10 Rosvall & Bergstrom (2008), Maps of random walks on complex networks reveal commu-
nity structure, P. Natl. Acad. Sci. USA 105(4), 1118-1123.

0.020 0.803 0.994 1.000 1.000 70 10
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problem & motivation

algorithmic historiography for evolution of field (Garfield, 1964–)

relying on citations between scientific publications from WoS & Scopus

p

p p p

p p p

u

v

u

v

w1 w2 wk. . .

k p

2 0.62
3 0.39
4 0.28
5 0.22
6 0.18
7 0.15
8 0.13
9 0.12
10 0.11

p

p

p

p

p

p

p

p

p

p

p

p

p

p

s

t

u

v

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

s

t

w1

w3

w2

w4

graph G

=
s

t

w3

w2

w4

contraction G/e

p +

s

t

w1

w3

w2

w4

removal G� e

(1� p)

p

p

p

p

p

p

p

s

t

u

w

v

graph G

! 1
z

 

s

t

u

w

v

H1

+

s

t

u

w

v

H2

z samples

+

s

t

u

w

v

H3

+ . . .

!
=

s

t

u

w

v

0.44

0.56

0.64

intermediacy �

D

Figure 1: Toy examples, asymptotic properties and algorithms’ details.

existing approaches include main paths (Hummon & Doreian, 1989)

(longest/shortest paths) many irrelevant/miss relevant publications

(intermediacy) important publications should only be well-connected
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intermediacy measure

(input) selected source & target publications s & t

(method) each citation is relevant/active with probability p

(measure) importance of publication u called intermediacy φu

φu = Pr(X u
st) = Pr(Xsu) Pr(Xut)
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Figure 1: Toy examples, asymptotic properties and algorithms’ details.

Xst exists path from s to t & Xu
st exists path through u
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intermediacy for p → 0

for p → 0 intermediacy φ governed by ` (proof)

for p → 0 if `u < `v then φu > φv
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Figure 1: Toy examples, asymptotic properties and algorithms’ details.

`u is length of shortest paths from s to t through u
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intermediacy for p → 1

for p → 1 intermediacy φ governed by σ (proof)

for p → 1 if σu < σv then φu < φv
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Figure 1: Toy examples, asymptotic properties and algorithms’ details.

σu is number of edge-disjoint paths from s to t through u
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intuition for p

for what p is direct citation equivalent to k indirect citations

Pr(Xuv ) = p = 1− (1− p2)k
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p phase transition

for what p source-target path Pr(Xst) > 0 & intermediacy ∃u : φu > 0

p ≥ n/2m = 1/k
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properties of intermediacy

path addition & contraction increase intermediacy (proof)
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alternatives to intermediacy

alternatives are main paths & expected paths (state of the art)
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exact algorithm

decomposition algorithm by edge contraction & removal (Ball, 1979)

Pr(Xst | G ) = p Pr(Xst | G/(s, u)) + (1− p) Pr(Xst | G − (s, u))
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approximate algorithm

simple Monte Carlo simulation algorithm by edge sampling

φu = Pr(X u
st | G ) =

1

N
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intermediacy 6= centrality

correlation coefficient between intermediacies φ & citations/references
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0.7

0.8

0.9

1

1.00 0.42 0.21 0.10 0.04 0.16 0.03

0.42 1.00 0.80 0.45 0.19 0.19 0.10

0.21 0.80 1.00 0.78 0.39 0.18 0.14

0.10 0.45 0.78 1.00 0.77 0.26 0.23

0.04 0.19 0.39 0.77 1.00 0.26 0.24

0.16 0.19 0.18 0.26 0.26 1.00 0.01

0.03 0.10 0.14 0.23 0.24 0.01 1.00

       

 p = 0.1

 p = 0.3

 p = 0.5

 p = 0.7

 p = 0.9

cit.

ref.

 

Pearson correlation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

intermediacy φ uncorrelated with standard centrality measures

12/18



modularity example

(target) Newman & Girvan (2004), Finding and evaluating community. . . , Phys. Rev. E 69(2), 026113.

(source) Klavans & Boyack (2017), Which type of citation analysis generates. . . , JASIST 68(4), 984-998.

Newman (2004)

Klavans (2017)

Waltman (2013)

Waltman (2012)

Hric (2014)

Fortunato (2010)

Newman (2006)

Ruiz-Castillo (2015)

Blondel (2008)

Newman (2006)

Newman (2004)

Rosvall (2008)

1 Waltman & Van Eck (2013), A smart local moving algorithm for large-
scale modularity-based community detection, EPJB 86, 471.

2 Waltman & Van Eck (2012), A new methodology for constructing a
publication-level classification system. . . , JASIST 63(12), 2378-2392.

3 Hric et al. (2014), Community detection in networks: Structural com-
munities versus ground truth, Phys. Rev. E 90(6), 062805.

4 Fortunato (2010), Community detection in graphs, Phys. Rep. 486(3-
5), 75-174.

5 Newman (2006), Modularity and community structure in networks,
PNAS 103(23), 8577-8582.

6 Ruiz-Castillo & Waltman (2015), Field-normalized citation impact in-
dicators using algorithmically. . . , J. Informetr. 9(1), 102-117.

7 Blondel et al. (2008), Fast unfolding of communities in large networks,
J. Stat. Mech., P10008.

8 Newman (2006), Finding community structure in networks using the
eigenvectors of matrices, Phys. Rev. E 74(3), 036104.

9 Newman (2004), Fast algorithm for detecting community structure in
networks, Phys. Rev. E 69(6), 066133.

10 Rosvall & Bergstrom (2008), Maps of random walks on complex net-
works reveal community structure, PNAS 105(4), 1118-1123.
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peer review example

(target) Cole & Cole (1967), Scientific output and recognition, Am. Sociol. Rev. 32(3), 377-390.

(source) Garcia et al. (2015), The author-editor game, Scientometrics 104(1), 361-380.

Cole (1967)

Garcia (2015)

Lee (2013)

Zuckerman (1971)

Campanario (1998)

Crane (1967)

Campanario (1998)

Gottfredson (1978)

Bornmann (2011)

Bornmann (2012)

Bornmann (2014)

Merton (1968)

1 Lee et al. (2013), Bias in peer review, JASIST 64(1), 2-17.

2 Zuckerman & Merton (1971), Patterns of evaluation in science: Insti-
tutionalisation, structure and functions. . . , Minerva 9(1), 66-100.

3 Campanario (1998), Peer review for journals as it stands today: Part
1, Sci. Commun. 19(3), 181-211.

4 Crane (1967), The gatekeepers of science: Some factors affecting the
selection of articles for scientific journals, Am. Sociol. 2(4), 195-201.

5 Campanario (1998), Peer review for journals as it stands today: Part
2, Sci. Commun. 19(4), 277-306.

6 Gottfredson (1978), Evaluating psychological research reports: Dimen-
sions, reliability, and correlates. . . , Am. Psychol. 33(10), 920-934.

7 Bornmann (2011), Scientific peer review, Annu. Rev. Inform. Sci.
45(1), 197-245.

8 Bornmann (2012), The Hawthorne effect in journal peer review, Sci-
entometrics 91(3), 857-862.

9 Bornmann (2014), Do we still need peer review? An argument for
change, JASIST 65(1), 209-213.

10 Merton (1968), The Matthew effect in science, Science 159(3810),
56-63.

snapshot of WoS collected by (Batagelj et al., 2017)

14/18



small-world example

(target) Watts & Strogatz (1998), Collective dynamics of

’small-world’ networks, Nature 393(6684), 440-442.

(source) Backstrom et al. (2012), Four degrees of separation,

In: Proceedings of the WebSci ’12, pp. 45-54.

1 Newman (2003), The structure and function of complex networks, SIAM Rev. 45(2), 167-256.

2 Albert & Barabási (2002), Statistical mechanics of complex networks, Rev. Mod. Phys. 74(1), 47-97.

3 Li et al. (2005), Towards a theory of scale-free graphs: Definition, properties, and implications, Internet
Math. 2(4), 431-523.

4 Leskovec et al. (2007), Graph evolution: Densification and shrinking diameters, ACM Trans. Knowl.
Discov. Data 1(1), 1-41.

5 Liben-Nowell et al. (2005), Geographic routing in social networks, P. Natl. Acad. Sci. USA 102(33),
11623-11628.

6 Strogatz (2001), Exploring complex networks, Nature 410(6825), 268-276.

7 Boldi et al. (2011), Layered label propagation: A multiresolution coordinate-free ordering for compress-
ing social networks, In: Proceedings of the WWW ’11, pp. 587-596.

8 Dorogovtsev (2002), Evolution of networks, Adv. Phys. 51(4), 1079-1187.

9 Ye et al. (2010), Distance distribution and average shortest path length estimation in real-world net-
works, In: Proceedings of the ADMA ’10, pp. 322-333.

10 Lattanzi et al. (2011), Milgram-routing in social networks, In: Proceedings of the WWW ’11, pp.
725-734.
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scale-free example

(target) Barabási & Albert (1999), Emergence of scaling in

random networks, Science 286(5439), 509-512.

(source) Liu et al. (2011), Controllability of

complex networks, Nature 473(7346), 167-173.

1 Albert & Barabási (2002), Statistical mechanics of complex networks, Rev. Mod. Phys. 74(1), 47-97.

2 Strogatz (2001), Exploring complex networks, Nature 410(6825), 268-276.

3 Boguñá et al. (2004), Cut-offs and finite size effects in scale-free networks, Eur. Phys. J. B 38(2),
205-209.

4 Nishikawa et al. (2003), Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize?,
Phys. Rev. Lett. 91(1), 014101.

5 Kim & Motter (2009), Slave nodes and the controllability of metabolic networks, New J. Phys. 11,
113047.

6 Newman (2003), The structure and function of complex networks, SIAM Rev. 45(2), 167-256.

7 Sorrentino et al. (2007), Controllability of complex networks via pinning, Phys. Rev. E 75(4), 046103.

8 Dorogovtsev (2002), Evolution of networks, Adv. Phys. 51(4), 1079-1187.

9 Pastor-Satorras et al. (2001), Dynamical and correlation properties of the Internet, Phys. Rev. Lett.
87(25), 258701.

10 Yu et al. (2009), On pinning synchronization of complex dynamical networks, Automatica 45(2), 429-
435.

in-house version of Scopus database at CWTS

16/18



deep learning example

(target) LeCun et al. (2015), Deep learning, Nature 521(7553), 436-444.

(source) Silver et al. (2017), Mastering the game of Go

without human knowledge, Nature 550(7676), 354-359.

1 Silver et al. (2016), Mastering the game of Go with deep neural networks and tree search, Nature
529(7587), 484-489.

2 Jouppi et al. (2017), In-datacenter performance analysis of a tensor processing unit, In: Proceedings
of the ISCA ’17, pp. 1-12.

3 Reagen et al. (2016), Minerva: Enabling low-power, highly-accurate deep neural network accelerators,
In: Proceedings of the ISCA ’16, pp. 267-278.

4 Chen et al. (2016), DianNao family: Energy-efficient hardware accelerators for machine learning, Com-
mun. ACM 59(11), 105-112.

5 Chen et al. (2016), Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural
networks, In: Proceedings of the ISCA ’16, pp. 127-138.

6 Moravč́ık et al. (2017), DeepStack: Expert-level artificial intelligence in heads-up no-limit poker, Sci-
ence 356(6337), 508-513.

7 Albericio et al. (2016), Cnvlutin: Ineffectual-neuron-free deep neural network computing, In: Proceed-
ings of the ISCA ’16, pp. 1-13.

8 Han et al. (2016), EIE: Efficient inference engine on compressed deep neural network, In: Proceedings
of the ISCA ’16, pp. 243-254.

9 Shafiee et al. (2016), ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic
in crossbars, In: Proceedings of the ISCA ’16, pp. 14-26.

10 Adolf et al. (2016), Fathom: Reference workloads for modern deep learning methods, In: Proceedings
of the IISWC ’16, pp. 1-10.
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conclusions & future work

(proposal) measure of importance of publications called intermediacy

(theory) conceptually clear & provable behavior in extreme cases

(practice) intermediacy shows promising results in case studies

(future) research app! applicability to other networks?

Newman (2004)

Klavans (2017)

Waltman (2013)

Waltman (2012)

Hric (2014)

Fortunato (2010)

Newman (2006)

Ruiz-Castillo (2015)

Blondel (2008)

Newman (2006)

Newman (2004)

Rosvall (2008)

Cole (1967)

Garcia (2015)

Lee (2013)

Zuckerman (1971)

Campanario (1998)

Crane (1967)

Campanario (1998)

Gottfredson (1978)

Bornmann (2011)

Bornmann (2012)

Bornmann (2014)

Merton (1968)
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(paper) arxiv.org/abs/1812.08259

(code) github.com/lovre/intermediacy
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