
Software systems through complex
networks science

Lovro Šubelj & Marko Bajec

University of Ljubljana
Faculty of Computer and Information Science

Slovenia

August 12, 2012

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 1 / 22

Outline

1 Introduction

2 Software networks

3 Analysis and discussion
Scale-free networks
Small-world networks
Network nodes
Network modules

4 Applications

5 Conclusions

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 2 / 22

Introduction

Introduction

Software is among most sophisticated human-made systems.

Little is known about the structure of ‘good’ software.

The above dilemma was denoted software law problem.

Networks provide a possible framework for software analysis.

We review different network analysis techniques → software engineering!

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 3 / 22

Software networks

Outline

1 Introduction

2 Software networks

3 Analysis and discussion
Scale-free networks
Small-world networks
Network nodes
Network modules

4 Applications

5 Conclusions

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 4 / 22

Software networks

Software networks

Class dependency networks:

software project classes → nodes,

software (inter-)class dependencies → links.

Figure: (left) Java class and corresponding class dependency network.
(right) Class dependency network of java and javax namespaces of Java.

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 5 / 22

Software networks

Software networks II

Class dependency networks:

constructed merely from signatures,

related to information flow within the project,

mesoscopic structures coincide with project packages.

Network Project n m k LCC |A| |P|
flmng Flamingo 4.1 141 269 3.82 0.88 153 18

colt Colt 1.2.0 243 720 5.93 0.94 267 21

jung JUNG 2.0.1 317 719 4.54 0.96 357 41

org Java 1.6.0.7 709 3571 10.07 0.69 778 50

weka Weka 3.6.6 953 4097 8.60 0.98 1054 84

javax Java 1.6.0.7 1595 5287 6.63 0.44 1889 118

java Java 1.6.0.7 1516 10049 13.26 1.00 1518 56

Table: Class dependency networks used in the study.

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 6 / 22

Analysis and discussion

Outline

1 Introduction

2 Software networks

3 Analysis and discussion
Scale-free networks
Small-world networks
Network nodes
Network modules

4 Applications

5 Conclusions

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 7 / 22

Analysis and discussion Scale-free networks

Scale-freeness – complexity and reusability

Scale-free networks:

degree distribution follows a power-law pk ∼ k−γ , γ > 1,

γ related to spreading processes (e.g., bug propagation),

an artifact of Yule’s process (rich-get-richer phenomena).

Figure: Degree distributions of weka, javax and java networks.

Distributions pink and poutk are related to code reusability and complexity!

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 8 / 22

Analysis and discussion Scale-free networks

Scale-freeness – complexity and reusability II

weka javax java

Node k in
i kout

i Node k in
i kout

i Node k in
i kout

i

Instances 541 5 JComponent 235 11 String 1308 7

Instance 381 4 Accessible 222 1 Class 1288 4

ClassAssigner 0 19 JTable 6 37 FileDialog 0 59

Filter 0 19 JTextPane 0 30 Frame 4 58

Table: Hubs (i.e., high degree nodes) within weka, javax and java networks.

Software networks:

scale-free nature of pink and highly truncated poutk ,

lower γ implies higher code reuse and decreases fault propagation,

classes with high kouti (and k ini) should be implemented with care.

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 9 / 22

Analysis and discussion Small-world networks

Small-worldness – structure and design

Small-world networks:

large clustering or transitivity C � CER ,

short distances between the nodes l ≈ lER .

Figure: A random graph, jung, jung & colt and jung & java networks. l equals
3.88, 4.19, 5.37 and 2.18, while node symbols correspond to clustering C .

C and l are related to characteristics and structural design of the project!

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 10 / 22

Analysis and discussion Small-world networks

Small-worldness – structure and design II

Network γ C D CER l E lER nd/n

flmng 3.0 0.25 0.31 0 .03 4.05 0.03 3 .47 0.38

colt 2.7 0.41 0.47 0 .02 3.44 0.03 3 .16 0.30

jung 2.5 0.37 0.42 0 .01 4.19 0.02 3 .88 0.48

org 2.2 0.57 0.62 0 .01 2.68 0.03 2 .81 0.39

weka 3.0 0.39 0.43 0 .01 2.91 0.01 3 .39 0.12

javax 2.6 0.38 0.44 0 .00 3.88 0.02 3 .16 0.30

java 2.4 0.69 0.73 0 .01 2.18 0.02 3 .09 0.17

Table: Statistics for class dependency networks used in the study.

Software networks:

well designed project should have C � CER and l ≈ lER ,

one should be wary of l � lER throughout the project evolution,

projects should not be combined with the core of the language.

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 11 / 22

Analysis and discussion Network nodes

Nodes – vulnerability and robustness

Network vulnerability and robustness:

seed nodes can propagate faults throughout the project,

centrality metrics DCi , CCi , BCi are an indicator of seed nodes,

classes with high BCi (and DCi) can influence the entire project,

classes with high CCi are prone to arbitrary fault within the project.

Figure: weka, javax and java networks with highlighted seed nodes.

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 12 / 22

Analysis and discussion Network nodes

Nodes – vulnerability and robustness II

weka javax java

Node CCi BCi Node CCi BCi Node CCi BCi

Prediction... 0.03 0.00 DefaultCell... 0.10 0.00 FileDialog 0.09 0.00

Classifier 0.03 0.01 JTable 0.10 0.12 Dialog 0.09 0.00

Instances 0.01 0.51 JComponent 0.04 0.23 String 0.02 0.36

RevisionHandler 0.00 0.26 Accessible 0.01 0.18 Object 0.02 0.32

Table: Seed nodes (i.e., influential nodes) within weka, javax and java networks.

Software networks:

classes with high BCi (and DCi) should be implemented with care,

classes with high CCi can be adopted for effective, efficient testing.

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 13 / 22

Analysis and discussion Network nodes

Nodes – controllability

Network controllability:

driver nodes nd can control the output of the entire project,

contrary to seed nodes, driver nodes tend to avoid hubs,

most software network are not highly controllable.

Network γ C D CER l E lER nd/n

flmng 3.0 0.25 0.31 0 .03 4.05 0.03 3 .47 0.38

colt 2.7 0.41 0.47 0 .02 3.44 0.03 3 .16 0.30

jung 2.5 0.37 0.42 0 .01 4.19 0.02 3 .88 0.48

org 2.2 0.57 0.62 0 .01 2.68 0.03 2 .81 0.39

weka 3.0 0.39 0.43 0 .01 2.91 0.01 3 .39 0.12

javax 2.6 0.38 0.44 0 .00 3.88 0.02 3 .16 0.30

java 2.4 0.69 0.73 0 .01 2.18 0.02 3 .09 0.17

Table: Statistics for class dependency networks used in the study.

Software networks:

controllability can be limited by decreasing k or γ.
L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 14 / 22

Analysis and discussion Network modules

Modules – aggregation and modularity

Network aggregation and modularity:

software packages reflect in different structural modules,

visualization classes aggregate into densely connected communities,

parsers arrange into functional modules with common linkage pattern.

Figure: (left) Communities representing modular structure. (middle) Functional
modules representing functional partitioning. (right) General structural modules.

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 15 / 22

Analysis and discussion Network modules

Modules – aggregation and modularity II

General structural modules most accurately model the package structure!

Network MO CP MM GP

flmng 16 0.580 14 0.609 27 0.521 16 0.610 26

colt 19 0.519 10 0.473 20 0.533 19 0.530 26

jung 39 0.614 13 0.650 30 0.661 39 0.680 41

org 47 0.503 11 0.537 30 0.378 39 0.536 33

weka 81 0.558 26 0.410 49 0.430 63 0.314 28

javax 107 0.704 59 0.761 155 0.392 89 0.747 192

Table: Normalized mutual information of packages and network modules.

Software networks:

community structure signifies highly modular structure of the project,

functional modules are related to functional roles within the project.

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 16 / 22

Applications

Outline

1 Introduction

2 Software networks

3 Analysis and discussion
Scale-free networks
Small-world networks
Network nodes
Network modules

4 Applications

5 Conclusions

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 17 / 22

Applications

Applications – software project abstraction

Figure: (left) jung network where node symbols represent high-level packages.
(right) Revealed hierarchy of structural modules that is consistent with packages.

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 18 / 22

Applications

Applications – software package prediction

Software package prediction:

package of a class is the most likely package within its module,

nodes are weighted according to Jaccard similarity.

Network l l∞ P P4 P3 P2 P1

flmng 2.65 4 0.566 ← 0.572 0 .793 1.000

colt 3.35 4 0.654 ← 0 .756 0.942 1.000

jung 2.97 4 0.617 ← 0.663 0 .857 1.000

org 3.50 7 0.616 0.616 0 .714 0.989 1.000

weka 3.02 6 0.684 0.692 0 .736 0.871 1.000

javax 3.11 5 0.626 0.631 0 .816 0.982 1.000

Table: Classification accuracy for software package prediction.

Packages can be predicted with ≈ 80% probability for most classes,
package hierarchy can be precisely identified for over 60% of the classes!

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 19 / 22

Conclusions

Outline

1 Introduction

2 Software networks

3 Analysis and discussion
Scale-free networks
Small-world networks
Network nodes
Network modules

4 Applications

5 Conclusions

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 20 / 22

Conclusions

Conclusions

Conclusions:

a study of software networks constructed from Java source code,

macroscopic, mesoscopic and microscopic network properties,

different network-based software project quality indicators,

prominent set of techniques for software engineering.

Future work:

comparison with other software quality metrics,

framework that could be easily applied in practice,

extension to also intra-class dependencies.

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 21 / 22

Thank you.
B lovro.subelj@fri.uni-lj.si

www http://lovro.lpt.fri.uni-lj.si/

L. Šubelj (University of Ljubljana) Software systems as networks SoftwareMining ’12 22 / 22

mailto:lovro.subelj@fri.uni-lj.si
http://lovro.lpt.fri.uni-lj.si/

	Introduction
	Software networks
	Analysis and discussion
	Scale-free networks
	Small-world networks
	Network nodes
	Network modules

	Applications
	Conclusions

