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Motivation

Motivation

Are there modules that could explain the structure of software networks?
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Network structure Degree mixing

Degree mixing

Degree mixing coefficient r ∈ [−1, 1]. (Newman [30])

r =
1

2mσk

∑
ij

(ki − k)(kj − k),

where σk is the standard deviation and ki degree of node i .

Assortative mixing refers to r > 0, and disassortative to r < 0.

r is simply a Pearson correlation coefficient of ki at links’ ends.

1) s-metric [23] 2) Γ connectivity [38] 3) Correlation profiles [27]
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Network structure Degree mixing

Degree mixing (II)

Social networks are assortative, while most other are disassortative!

Type Network n m k C D r

Collaboration
netsci [33] 1589 2742 3.5 0.638 0.690 0.462

condmat [29] 27519 116181 8.4 0.655 0.722 0.166
comsci [3] 239 568 4.8 0.479 0.561 −0.044

Online social pgp [5] 10680 24316 4.6 0.266 0.317 0.238

Social

football [11] 115 613 10.7 0.403 0.419 0.162
jazz [12] 198 2742 27.7 0.617 0.703 0.020

dolphins [25] 62 159 5.1 0.259 0.319 −0.044
karate [58] 34 78 4.6 0.571 0.666 −0.476

Communication
emails [14] 1133 5451 9.6 0.220 0.253 0.078
enron [20] 36692 183831 10.0 0.497 0.530 −0.111

Road network euro [50] 1039 1305 2.5 0.019 0.025 0.090
Power grid power [56] 4941 6594 2.7 0.080 0.100 0.003

Citation hepart [1] 27770 352285 25.4 0.312 0.353 −0.030
Documentation javadoc [49] 2089 7934 7.6 0.373 0.433 −0.070

Protein
yeast1 [37] 2445 6265 5.1 0.215 0.250 −0.101
yeast2 [15] 2114 2203 2.1 0.059 0.072 −0.162

Software

javax [53] 1595 5287 6.6 0.381 0.440 −0.120
jung [53] 317 719 4.5 0.366 0.423 −0.190

guava [54] 174 355 4.1 0.320 0.375 −0.218
java [53] 1516 10049 13.3 0.685 0.731 −0.283

Web graph blogs [2] 1490 16715 22.4 0.263 0.293 −0.221
Metabolic elegans [16] 453 2025 8.9 0.646 0.710 −0.226
Internet oregon [20] 767 1734 4.5 0.293 0.317 −0.299
Bipartite women [8] 32 89 5.6 0.000 0.000 −0.337
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Network structure Clustering mixing

Network clustering

Network clustering coefficient C = 1
n

∑
i ci . (Watts and Strogatz [56])

ci =
ti(ki
2

) ,
where ti is number of links among Γi , ci ∈ [0, 1].

For many real-world networks ci ∼ 1/ki . [41, 42, 48]

4) Degree assortative 5) Degree disassortative

High degree nodes never have high ci !

L. Šubelj (University of Ljubljana) Structured-world conjecture May 3, 2012 7 / 42



Network structure Clustering mixing

Degree-corrected clustering

Network degree-corrected clustering co. D = 1
n

∑
i di . (Soffer and Vázquez [46])

di =
ti

ωi
,

where ωi is the max. number of links with respect to {ki}, di ∈ [0, 1].

Since ωi ≤
(ki

2

)
, di ≥ ci and D ≥ C by definition.

6) Degree assortative 7) Degree disassortative

For pseudo-fractal model ci ∼ 1/ki implies ci ∼ 1/ log ki . [46]
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Network structure Clustering mixing

Degree-corrected clustering (II)

Most nodes in assortative networks share similar di � 0, whereas
30-55% of nodes in disassortative networks have di ≈ 0!

8) Degree assortative 9) Degree disassortative

di appear to capture certain characteristics of the underlying domain.
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Network structure Clustering mixing

Clustering mixing

Define clustering mixing coefficients rc , rd ∈ [−1, 1]. (Šubelj and Bajec [54])

rd =
1

2mσd

∑
ij

(di − D)(dj − D),

where σd is the standard deviation. (Similarly for rc .)

Contrary to rc , rd � 0 in real-world networks!

10) Degree assortative 11) Degree disassortative
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Network structure Clustering mixing

Clustering mixing (II)

Type Network n m k C D r rc rd di < pr di < pc

Collaboration
netsci [33] 1589 2742 3.5 0.638 0.690 0.462 0.442 0.679 1% 1%

condmat [29] 27519 116181 8.4 0.655 0.722 0.166 0.116 0.291 1% 1%
comsci [3] 239 568 4.8 0.479 0.561 −0.044 0.123 0.355 6% 6%

Online social pgp [5] 10680 24316 4.6 0.266 0.317 0.238 0.497 0.632 27% 27%

Social

football [11] 115 613 10.7 0.403 0.419 0.162 0.369 0.385 0% 0%
jazz [12] 198 2742 27.7 0.617 0.703 0.020 0.008 0.198 1% 1%

dolphins [25] 62 159 5.1 0.259 0.319 −0.044 0.192 0.234 15% 15%
karate [58] 34 78 4.6 0.571 0.666 −0.476 −0.229 0.277 3% 6%

Communication
emails [14] 1133 5451 9.6 0.220 0.253 0.078 0.214 0.317 14% 15%
enron [20] 36692 183831 10.0 0.497 0.530 −0.111 0.185 0.379 4% 4%

Road network euro [50] 1039 1305 2.5 0.019 0.025 0.090 0.395 0.499 91% 91%
Power grid power [56] 4941 6594 2.7 0.080 0.100 0.003 0.469 0.653 74% 74%

Citation hepart [1] 27770 352285 25.4 0.312 0.353 −0.030 0.132 0.370 6% 6%
Documentation javadoc [49] 2089 7934 7.6 0.373 0.433 −0.070 0.090 0.440 9% 9%

Protein
yeast1 [37] 2445 6265 5.1 0.215 0.250 −0.101 0.372 0.534 29% 29%
yeast2 [15] 2114 2203 2.1 0.059 0.072 −0.162 0.576 0.675 68% 68%

Software

javax [53] 1595 5287 6.6 0.381 0.440 −0.120 −0.041 0.545 17% 17%
jung [53] 317 719 4.5 0.366 0.423 −0.190 0.092 0.443 21% 21%

guava [54] 174 355 4.1 0.320 0.375 −0.218 0.075 0.734 34% 34%
java [53] 1516 10049 13.3 0.685 0.731 −0.283 −0.574 0.536 1% 100%

Web graph blogs [2] 1490 16715 22.4 0.263 0.293 −0.221 −0.057 0.308 8% 13%
Metabolic elegans [16] 453 2025 8.9 0.646 0.710 −0.226 −0.240 0.183 1% 3%
Internet oregon [20] 767 1734 4.5 0.293 0.317 −0.299 −0.231 0.262 35% 70%
Bipartite women [8] 32 89 5.6 0.000 0.000 −0.337 100% 100%

pr = k
n−1

and pc ≤
(
∑

i k2
i −nk)2

n3k3 , while percentages ignore nodes with ki ≤ 1.
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Network structure Clustering mixing

Clustering assortativity

rd � 0 in real-world networks! (rc < 0 in disassortative networks.)

di ≈ 0 and rd � 0 imply connected regions with no clustering.

rd captures how well separated are different network structures.

rd 9 0 when n→∞ in a random graph, however, D ≈ 0.
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Network structure Network structures

Network structures

Let community be a densely linked group of nodes that are sparsely
linked with the rest of the network.

Consequence of homophily [28, 34] or triadic closure [13] in social networks.
Result in degree assortativity, when their sizes differ. (Newman and Park [36])

Recently, communities are a consequence of clustering. (Foster et al. [10])

There is substantial evidence that communities appear concurrently
with high clustering and assortative mixing by degree. [31, 21, 57]

Non-social real-world networks greatly deviate from this picture!
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Network structure Network structures

Network structures (II)

Most real-world networks still contain at least some communities.
Community extraction: (Zhao et al. [59])

1 generate a pool of candidate communities,
2 extract community S with the highest value of W ,

W = s(n − s)

(∑
i∈S kS

i

s2
−
∑

i∈S ki − kS
i

s(n − s)

)
,

where kS
i and ki − kS

i are internal and external degree of node i .
3 repeat step 1. until W drops below the value expected at random.

Extract only the links within S , but not those between S and SC !

Communities overlaid over original networks and networks after extraction, respectively.
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Network structure Network structures

Network structures (III)

After extraction of communities ≈ 80% nodes remain!
Network structure beyond communities is characterized by:

disassortative mixing by degree,
lower (degree-corrected) clustering,
short distances between the nodes.

12) # nodes n 13) LCC 14) Mixing r

15) Distances l 16) Clustering C 17) Mixing rd
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Network structure Network structures

Network structures (IV)

Are there mesoscopic structures that could explain these properties?

Let a module be a group of nodes with common neighbors.

18) Communities 19) Modules 20) Role models [43]

Modules coincide with groups of regularly equivalent nodes.

Such modules should result in:

disassortative mixing by degree, as long as their sizes differ,
lower (degree-corrected) clustering (absence of triangles),
short distances between the nodes (efficient global navigation).
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Network structure Structured-worlds

Structured-world conjecture

Structured-world conjecture:
Real-world networks are composed of modules characterizing different
functions (roles) within the system and overlaid by communities
based on some assortative tendency of the nodes, and noise.

Modules explain degree disassortativity and efficient long-range
navigation, whereas communities increase overall clustering and
degree assortativity, and explain efficient short-range navigation.

Structured-world networks must necessarily be heterogeneous!

Note that degree disassortativity and low clustering are already expected properties of scale-free networks.
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Structure detection Label propagation

Label propagation

Let gi be unknown node (module) labels.

Label propagation algorithm (LPA): (Raghavan et al. [40])

1 initialize nodes with unique labels, gi = i ,
2 node i adopts the label shared by most in Γi ,

gi = argmax
g

∑
j∈Γi

δ(gj , g),

3 repeat step 2. until convergence.

Algorithm has near linear time complexity O(m1.2). (Šubelj and Bajec [51])

L. Šubelj (University of Ljubljana) Structured-world conjecture May 3, 2012 19 / 42



Structure detection Label propagation

Label propagation (II)

Convergence issues for, e.g., overlapping communities.
↪→ gi is retained, when among most frequent in Γi .

Oscillation of labels in, e.g., bipartite networks.
↪→ gi are updated in a random order (sequentially).

Results can be improved by applying node preferences fi . (Leung et al. [22])

gi = argmax
g

∑
j∈Γi

fj · δ(gj , g)
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Structure detection Label propagation

Balanced propagation

Balanced propagation algorithm (BPA): (Šubelj and Bajec [50])

gi = argmax
g

∑
j∈Γi

bj · δ(gj , g),

where bi = 1
1+e−η(ii−λ) (or bi = ii ) and ii is index of i , ii ∈ (0, 1].

Algorithm retains scalability, and improves stability and performance.

Algorithm
# distinct in 1000 partitions

karate dolphins books football jazz elegans

LPA 184 525 269 414 63 707
BPA 19 36 29 154 20 75
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Structure detection Label propagation

Defensive propagation

Defensive propagation algorithm (DPA): (Šubelj and Bajec [51])

gi = argmax
g

∑
j∈Γi

pj · δ(gj , g),

where pi is the probability of a random walker utilized on gi .

23) Community cores 24) Defensive and offensive propagation

Defensive and offensive prop. obtain high “recall” and “precision”.
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Structure detection General propagation

General propagation

Label propagation can detect only connected (cohesive) structures.

For modules, labels can be propagated through common neighbors!

General propagation algorithm (GPA): (Šubelj and Bajec [55])

gi = argmax
g

νg

∑
j∈Γi

fj · δ(gj , g) + (1− νg )
∑
j∈Γi

∑
l∈Γj\Γi

f̃l/kj · δ(gl , g)

 ,

where νg ∈ [0, 1] are parameters and fi = bi pi (similarly for f̃i ).

νg are ≈ 1 and ≈ 0 for communities and modules, respectively.
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Structure detection General propagation

General propagation (II)

Modeling of νg is of vital importance (guides the algorithm).
Dynamic based on conductance Φ. (Šubelj and Bajec [55])

Dynamic based on clustering C . (Šubelj and Bajec [52])

Simple model based on clustering D (and mixing rd ): (Šubelj and Bajec [54])

νgi =


1 for di ≥ pc (D ≥ pc ),

0 for di < pc (D < pc ),

0.5 otherwise.

25) di ≥ pc or di < pc . 26) di ≥ pc and di < pc !

Model seems to ignore most modules (structured-world conjecture)!
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Structure detection General propagation

Hierarchical propagation

k-partite network on n nodes becomes a clique when k → n or n→ k.

Modules can become obscure in the presence of communities!

How community detection algorithms identify network modules?

↪→ Dependent modules can be identified as a community, and refined.

Note that modules must be detected “twice”!
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Structure detection General propagation

Hierarchical propagation (II)

Hierarchical propagation algorithm (HPA): (Šubelj and Bajec [54])

1 partition the network into communities and modules using GPA,
2 refine each module (step 1.) and accept refinements that increase L,
3 repeat step 1. on a super-network induced by initial structures.

Algorithm reveals entire hierarchy H, where L is the likelihood of H.

Bottom-most level of H is reported for structure detection.

Time complexity for each level of H can be estimated to O((km)1.2).
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Structure detection General propagation

Hierarchical propagation (III)

Single algorithm for communities and modules.

No prior knowledge is required (e.g., number of structures)!

Algorithm uses only local information (parallelization).

Relatively simple to extend (e.g., prior knowledge).

Time complexity is near ideal O(km)!

Relatively simple to implement.
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Experimental analysis Synthetic networks

Community detection

Community detection algorithms: greedy modularity [32, 6] (GM),
multi-stage modularity [4] (LUV), sequential clique percolation [18] (SCP),
Markov clustering [47] (MCL), Infomod [45] (IMD), Infomap [44] (IMP), label
propagation [40] (LP) and hierarchical propagation [54] (HP).

27) (Girvan and Newman [11]) 28) (Lancichinetti et al. [19]) (small) 29) (Lancichinetti et al. [19]) (big)
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Experimental analysis Synthetic networks

Module detection

Module detection algorithms: matrix factorization [9] (NF), k-means [26]

based on [24] (KM), mixture model [35] (MM), degree-corrected mixture
model [17] (CM), Infomod [45] (IMD), Infomap [44] (IMP), model
propagation [52] (MP) and hierarchical propagation [54] (HP).

30) (Pinkert et al. [39]) 31) (Šubelj and Bajec [54]) (HN6) 32) (Šubelj and Bajec [54]) (HN7)

L. Šubelj (University of Ljubljana) Structured-world conjecture May 3, 2012 30 / 42



Experimental analysis Real-world networks

Real-world networks

Structure detection algorithms: multi-stage modularity [4] (LUV), mixture
model [35] (MM), classical propagation [54] (CP) and hierarchical
propagation [54] (HP).

Network
NMI ARI

LUV MM CP HP LUV MM CP HP
football 0.876 0.823 0.905 0.909 0.771 0.683 0.841 0.850
karate 0.629 0.912 0.834 0.866 0.510 0.912 0.823 0.861
jung 0.605 0.662 0.650 0.684 0.269 0.276 0.218 0.280

women 0.309 0.825 0.217 0.932 0.174 0.716 0.119 0.936

33) Zachary karate net. 34) Davis women net.
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Experimental analysis Real-world networks

Real-world networks (II)

35) jung software network 36) javax software network

37) Amazon web graph 38) Protein interactions

L. Šubelj (University of Ljubljana) Structured-world conjecture May 3, 2012 32 / 42



Experimental analysis Real-world networks

Real-world networks (III)

Network Module n 1− Φ Description

jung

Core community 65 0.86 [jung.visualization.] *(Server|Viewer|Pane|Model|Context) (9);
control.* (4) control.*Control (5); layout.* (7);
picking.*State (3); picking.*Support (6);
renderers.*Renderer (13); renderers.*Support (3); etc.

5-conf. (upper left) 3 0.00 [jung.algorithms.filters.] *Filter (3).
5-conf. (upper right) 21 0.33 [jung.graph.] *(Graph|Multigraph|Tree) (18); etc.

5-conf. (central) 28 0.07 [jung.] algorithms.generators.*Generator (2); algorithms.

importance.* (4) algorithms.layout.*Layout* (3); algorithms.

scoring.*Scorer (2); algorithms.shortestpath.* (2);
graph.*(Graph|Tree|Forest) (4); etc. (interfaces)

5-conf. (lower left) 13 0.00 [jung.algorithms.] layout.*Layout* (7); layout3d.*Layout (3); etc.
5-conf. (lower right) 44 0.03 [jung.] algorithms.cluster.*Clusterer* (4); algorithms.generators.

random.*Generator (5); algorithms.importance.*Betweenness* (3);
algorithms.metrics.* (3); algorithms.scoring.** (5); algorithms.

shortestpath.* (5); graph.util.* (7); etc. (implementations)

2-conf. (upper) 13 0.03 [jung.io.graphml.] parser.*Parser (10); etc.
2-conf. (lower) 13 0.38 [jung.io.graphml.] *Metadata (8); etc.

1-conf. (central) 2 0.00 [jung.visualization.control.] *Plugin (2).
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Experimental analysis Real-world networks

Real-world networks (IV)

Network Module n 1− Φ Description

javax

Core community 179 0.64 [javax.swing.] plaf.*UI (24); plaf.basic.Basic*UI (42); plaf.metal.Me-
tal*UI (22); plaf.multi.Multi*UI (30); plaf.synth.Synth*UI (40); etc.

3-conf. (upper) 193 0.15 [javax.] accessibility.Accessible* (10); swing.J* (41); swing.**(Bor-
der|Borders|Box|Button|Dialog|Divider|Editor|Factory|Filter|Icon

|Kit|LookAndFeel|Listener|Model|Pane|Panel|Popup|Renderer|UIRes-

ource|View) (92); etc.
3-conf. (left) 113 0.11 [javax.] accessibility.Accessible* (6); swing.* (34); swing.event.*Ev-

ent (8); swing.event.*Listener (13); swing.plaf.*UI (6); etc.
3-conf. (lower) 44 0.19 [javax.swing.] text.*View (15); text.html.*View (16); etc.
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Experimental analysis Real-world networks

Structure prediction

How well the model fits the network observed? Not link prediction!

Network
− logL and # levels

Runs CP HP—pr and pc (Clauset et al. [7])

football 104 1010.9 3 954.8 5 1004.1 3 884.2 11

karate 105 174.1 3 172.3 3 173.9 2 73.3 10

euro 103 4108.9 6 3883.2 8 3924.4 5

yeast2 102 12495.0 6 11611.2 7 11596.4 4

javax 102 13020.7 4 12894.1 4 11512.2 3

jung 103 2354.5 5 2312.5 4 2272.9 4

elegans 102 8734.1 5 8640.9 6 8243.3 5

women 104 193.9 2 163.6 1 163.6 1

39) Module hierarchy 40) Binary hierarchy
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Experimental analysis Real-world networks

Structure prediction (II)

Hierarchies revealed with CP and HP algorithms, respectively.

41) javax software network 42) elegans metabolic network

Hierarchies and blockmodels revealed with CP and HP algorithms, respectively.
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Experimental analysis Software networks

Software networks

Software network structures coincide with software packages.
Communities and modules more accurately predict packages than
communities alone!

Blockmodels revealed with CP and HP algorithms, respectively.
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Experimental analysis Software networks

Software networks (II)

Software packages can be predicted with ≈ 80% accuracy, whereas
complete hierarchy can be precisely identified for over 60% of classes!

CA
Network l l∞ P P4 P3 P2 P1
flamingo 2.65 4 0.566 ← 0.572 0.793 1.000

colt 3.35 4 0.654 ← 0.756 0.942 1.000
jung 2.97 4 0.617 ← 0.663 0.857 1.000
org 3.50 7 0.616 0.616 0.714 0.989 1.000

weka 3.02 6 0.684 0.692 0.736 0.871 1.000
javax 3.11 5 0.626 0.631 0.816 0.982 1.000

Networks should not be combined with the core of the language.
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Conclusions

Conclusions

Structured-world conjecture provides a mesoscopic view on the
structure of real-world networks!
↪→ Different structures imply different macroscopic network
properties.
↪→ Clustering assortativity captures how different modules are merged.
↪→ Conjecture combines scale-free and small-world phenomena.

Parameter-free algorithm for detection of communities and modules.
↪→ Algorithm is (at least) comparable to current state-of-the-art.
↪→ Network properties could be further utilized within the algorithm!
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Conclusions

Future work

How do dependent modules link between each other?
↪→ Necessary to develop a measure of module quality.

Results suggest that module complexity is much larger than expected!

How to utilize degree mixing within the algorithm?
↪→ Necessary to analyze networks with millions (billions) of nodes.
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Thank you.
B lovro.subelj@fri.uni-lj.si

www http://lovro.lpt.fri.uni-lj.si/
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[41] E. Ravasz and Albert László Barabási. Hierarchical organization in complex networks.
Physical Review E, 67(2):026112, 2003.

[42] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and Albert László Barabási.
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